Suppr超能文献

通过低能核反应成像发现特殊核材料。

Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging.

作者信息

Rose P B, Erickson A S, Mayer M, Nattress J, Jovanovic I

机构信息

G.W. Woodruff School of Mechanical Engineering, Nuclear and Radiological Engineering Program, Georgia Institute of Technology, Atlanta GA 30332, USA.

Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park PA 16802, USA.

出版信息

Sci Rep. 2016 Apr 18;6:24388. doi: 10.1038/srep24388.

Abstract

Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as "searching for a needle in a haystack" because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material's areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

摘要

武器级铀和钚可被用作具有极大破坏潜力的核爆炸物。由于其特征穿透辐射的固有自发发射率低且易于屏蔽,检测它们的问题,尤其是在运输过程中的标准货柜中检测,被形容为“大海捞针”。目前,发现屏蔽良好的特殊核材料的唯一实用方法是使用外部辐射源进行主动询问。然而,这些材料与屏蔽材料的相似性以及所需辐射剂量可能超过监管限制,使得这种方法在实际中无法广泛应用。我们引入一种低剂量主动检测技术,称为低能核反应成像,它利用多兆电子伏特单能光子和中子相互作用的物理原理,同时测量材料的面密度和有效原子序数,同时通过观察β延迟中子发射来确认可裂变材料的存在。我们首次使用一种简单而可靠的源,用这种新技术演示了铀的识别和成像,为其在安全应用中的广泛采用奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5d4/4834544/fc76ec09dc3f/srep24388-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验