Görres Joseph, Brehler Michael, Franke Jochen, Vetter Sven Y, Grützner Paul A, Meinzer Hans-Peter, Wolf Ivo
Division of Medical and Biological Informatics (E130), German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
Medical Imaging and Navigation in Trauma and Orthopedic Surgery, BG Trauma Center, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Germany.
Int J Comput Assist Radiol Surg. 2016 Sep;11(9):1661-72. doi: 10.1007/s11548-015-1316-9. Epub 2016 Apr 19.
In orthopedic surgeries, it is important to avoid intra-articular implant placements, which increase revision rates and the risk of arthritis. In order to support the intraoperative assessment and correction of surgical implants, we present an automatic detection approach using cone-beam computed tomography (CBCT).
Multiple active shape models (ASM) with specified articular surface regions are used to isolate the joint spaces. Fast and easy-to-implement methods are integrated in the ASM segmentation to optimize the robustness and accuracy for intraoperative application. A cylinder detection method is applied to determine metal implants. Intersections between articular surfaces and cylinders are detected and used to find intra-articular collisions.
Segmentations of two calcaneal articular surfaces were evaluated on 50 patient images and have shown average surface distance errors of 0.59 and 0.46 mm, respectively. The proposed model-independent segmentation at the specified articular surface regions allowed to significantly decrease the error by 22 and 25 % on average. The method was able to compensate suboptimal initializations for translations of up to 16 mm and rotations of up to 21[Formula: see text]. In a human cadaver test, articular perforations could be localized with an accuracy of 0.80 mm on average.
A concept for automatic intraoperative detection of intra-articular implants in CBCT images was presented. The results show a reliable segmentation of articular surfaces in retrospective patient data and an accurate localization of misplaced implants in artificially created human cadaver test cases.
在骨科手术中,避免关节内植入物的放置非常重要,因为这会增加翻修率和患关节炎的风险。为了支持手术植入物的术中评估和校正,我们提出了一种使用锥形束计算机断层扫描(CBCT)的自动检测方法。
使用具有指定关节表面区域的多个主动形状模型(ASM)来分离关节间隙。快速且易于实现的方法被集成到ASM分割中,以优化术中应用的鲁棒性和准确性。应用圆柱检测方法来确定金属植入物。检测关节表面与圆柱之间的交点,并用于发现关节内碰撞。
在50例患者图像上对两个跟骨关节面的分割进行了评估,平均表面距离误差分别为0.59和0.46毫米。在指定关节表面区域提出的与模型无关的分割能够平均显著降低误差22%和25%。该方法能够补偿高达16毫米的平移和高达21[公式:见原文]的旋转的次优初始化。在人体尸体测试中,关节穿孔的定位平均精度为0.80毫米。
提出了一种在CBCT图像中自动术中检测关节内植入物的概念。结果表明,在回顾性患者数据中关节面分割可靠,在人工创建的人体尸体测试案例中错位植入物定位准确。