Khramtsova E A, Sosnovsky D V, Ageeva A A, Nuin E, Marin M L, Purtov P A, Borisevich S S, Khursan S L, Roth H D, Miranda M A, Plyusnin V F, Leshina T V
Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya st., 3, 630090 Novosibirsk, Russia.
Phys Chem Chem Phys. 2016 May 14;18(18):12733-41. doi: 10.1039/c5cp07305g. Epub 2016 Apr 21.
The model reaction of photoinduced donor-acceptor interaction in linked systems (dyads) has been used to study the comparative reactivity of a well-known anti-inflammatory drug, (S)-naproxen (NPX) and its (R)-isomer. (R)- or (S)-NPX in these dyads is linked to (S)-N-methylpyrrolidine (Pyr) using a linear or cyclic amino acid bridge (AA or CyAA), to give (R)-/(S)-NPX-AA-(S)-Pyr flexible and (R)-/(S)-NPX-CyAA-(S)-Pyr rigid dyads. The donor-acceptor interaction is reminiscent of the binding (partial charge transfer, CT) and electron transfer (ET) processes involved in the extensively studied inhibition of the cyclooxygenase enzymes (COXs) by the NPX enantiomers. Besides that, both optical isomers undergo oxidative metabolism by enzymes from the P450 family, which also includes ET. The scheme proposed for the excitation quenching of the (R)- and (S)-NPX excited state in these dyads is based on the joint analysis of the chemically induced dynamic nuclear polarization (CIDNP) and fluorescence data. The (1)H CIDNP effects in this system appear in the back electron transfer in the biradical-zwitterion (BZ), which is formed via dyad photoirradiation. The rate constants of individual steps in the proposed scheme and the fluorescence quantum yields of the local excited (LE) states and exciplexes show stereoselectivity. It depends on the bridge's length, structure and solvent polarity. The CIDNP effects (experimental and calculated) also demonstrate stereodifferentiation. The exciplex quantum yields and the rates of formation are larger for the dyads containing (R)-NPX, which let us suggest a higher contribution from the CT processes with the (R)-optical isomer.
在连接体系(二元体系)中光诱导供体-受体相互作用的模型反应已被用于研究一种著名的抗炎药物(S)-萘普生(NPX)及其(R)-异构体的相对反应活性。在这些二元体系中,(R)-或(S)-NPX通过线性或环状氨基酸桥(AA或CyAA)与(S)-N-甲基吡咯烷(Pyr)相连,得到(R)-/(S)-NPX-AA-(S)-Pyr柔性二元体系和(R)-/(S)-NPX-CyAA-(S)-Pyr刚性二元体系。供体-受体相互作用让人联想到NPX对映体广泛研究的抑制环氧化酶(COXs)过程中涉及的结合(部分电荷转移,CT)和电子转移(ET)过程。除此之外,两种光学异构体都通过细胞色素P450家族的酶进行氧化代谢,这也包括电子转移。为这些二元体系中(R)-和(S)-NPX激发态的激发猝灭提出的方案是基于对化学诱导动态核极化(CIDNP)和荧光数据的联合分析。该体系中的¹H CIDNP效应出现在通过二元体系光照射形成的双自由基-两性离子(BZ)的反向电子转移中。所提出方案中各个步骤的速率常数以及局域激发(LE)态和激基复合物的荧光量子产率显示出立体选择性。这取决于桥的长度、结构和溶剂极性。CIDNP效应(实验和计算)也证明了立体分化。对于含有(R)-NPX的二元体系,激基复合物量子产率和形成速率更大,这让我们认为(R)-光学异构体的CT过程贡献更高。