Suppr超能文献

分化依赖性能量产生和代谢物利用:神经干细胞、神经元和星形胶质细胞的比较研究

Differentiation-Dependent Energy Production and Metabolite Utilization: A Comparative Study on Neural Stem Cells, Neurons, and Astrocytes.

作者信息

Jády Attila Gy, Nagy Ádám M, Kőhidi Tímea, Ferenczi Szilamér, Tretter László, Madarász Emília

机构信息

1 Laboratory of Cellular and Developmental Neurobiology, Institute of Experimental Medicine of Hungarian Academy of Sciences , Budapest, Hungary .

2 Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University , Budapest, Hungary .

出版信息

Stem Cells Dev. 2016 Jul 1;25(13):995-1005. doi: 10.1089/scd.2015.0388. Epub 2016 Jun 7.

Abstract

While it is evident that the metabolic machinery of stem cells should be fairly different from that of differentiated neurons, the basic energy production pathways in neural stem cells (NSCs) or in neurons are far from clear. Using the model of in vitro neuron production by NE-4C NSCs, this study focused on the metabolic changes taking place during the in vitro neuronal differentiation. O2 consumption, H(+) production, and metabolic responses to single metabolites were measured in cultures of NSCs and in their neuronal derivatives, as well as in primary neuronal and astroglial cultures. In metabolite-free solutions, NSCs consumed little O2 and displayed a higher level of mitochondrial proton leak than neurons. In stem cells, glycolysis was the main source of energy for the survival of a 2.5-h period of metabolite deprivation. In contrast, stem cell-derived or primary neurons sustained a high-level oxidative phosphorylation during metabolite deprivation, indicating the consumption of own cellular material for energy production. The stem cells increased O2 consumption and mitochondrial ATP production in response to single metabolites (with the exception of glucose), showing rapid adaptation of the metabolic machinery to the available resources. In contrast, single metabolites did not increase the O2 consumption of neurons or astrocytes. In "starving" neurons, neither lactate nor pyruvate was utilized for mitochondrial ATP production. Gene expression studies also suggested that aerobic glycolysis and rapid metabolic adaptation characterize the NE-4C NSCs, while autophagy and alternative glucose utilization play important roles in the metabolism of stem cell-derived neurons.

摘要

虽然很明显干细胞的代谢机制应与分化神经元的代谢机制有很大不同,但神经干细胞(NSCs)或神经元中的基本能量产生途径仍远不清楚。本研究利用NE-4C神经干细胞体外产生神经元的模型,聚焦于体外神经元分化过程中发生的代谢变化。在神经干细胞及其神经元衍生物的培养物中,以及在原代神经元和星形胶质细胞培养物中,测量了氧气消耗、氢离子产生以及对单一代谢物的代谢反应。在无代谢物溶液中,神经干细胞消耗的氧气很少,且线粒体质子泄漏水平高于神经元。在干细胞中,糖酵解是代谢物剥夺2.5小时期间细胞存活的主要能量来源。相比之下,干细胞衍生的神经元或原代神经元在代谢物剥夺期间维持高水平的氧化磷酸化,这表明利用自身细胞物质来产生能量。干细胞对单一代谢物(葡萄糖除外)的反应是增加氧气消耗和线粒体ATP产生,这表明代谢机制能快速适应可用资源。相比之下,单一代谢物不会增加神经元或星形胶质细胞的氧气消耗。在“饥饿”的神经元中,乳酸和丙酮酸都不用于线粒体ATP的产生。基因表达研究还表明,有氧糖酵解和快速代谢适应是NE-4C神经干细胞的特征,而自噬和替代性葡萄糖利用在干细胞衍生神经元的代谢中起重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cce/4931359/5010bba5fd92/fig-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验