Suppr超能文献

使用静息态功能磁共振成像(fMRI)的静态和动态脑连接对精神分裂症和双相情感障碍患者进行分类

Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity.

作者信息

Rashid Barnaly, Arbabshirani Mohammad R, Damaraju Eswar, Cetin Mustafa S, Miller Robyn, Pearlson Godfrey D, Calhoun Vince D

机构信息

The Mind Research Network & LBERI, Albuquerque, New Mexico, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico, USA.

The Mind Research Network & LBERI, Albuquerque, New Mexico, USA; Geisinger Health System, Danville, Pennsylvania, USA.

出版信息

Neuroimage. 2016 Jul 1;134:645-657. doi: 10.1016/j.neuroimage.2016.04.051. Epub 2016 Apr 23.

Abstract

Recently, functional network connectivity (FNC, defined as the temporal correlation among spatially distant brain networks) has been used to examine the functional organization of brain networks in various psychiatric illnesses. Dynamic FNC is a recent extension of the conventional FNC analysis that takes into account FNC changes over short periods of time. While such dynamic FNC measures may be more informative about various aspects of connectivity, there has been no detailed head-to-head comparison of the ability of static and dynamic FNC to perform classification in complex mental illnesses. This paper proposes a framework for automatic classification of schizophrenia, bipolar and healthy subjects based on their static and dynamic FNC features. Also, we compare cross-validated classification performance between static and dynamic FNC. Results show that the dynamic FNC significantly outperforms the static FNC in terms of predictive accuracy, indicating that features from dynamic FNC have distinct advantages over static FNC for classification purposes. Moreover, combining static and dynamic FNC features does not significantly improve the classification performance over the dynamic FNC features alone, suggesting that static FNC does not add any significant information when combined with dynamic FNC for classification purposes. A three-way classification methodology based on static and dynamic FNC features discriminates individual subjects into appropriate diagnostic groups with high accuracy. Our proposed classification framework is potentially applicable to additional mental disorders.

摘要

最近,功能网络连接性(FNC,定义为空间上相隔的脑网络之间的时间相关性)已被用于研究各种精神疾病中脑网络的功能组织。动态FNC是传统FNC分析的最新扩展,它考虑了短时间内FNC的变化。虽然这种动态FNC测量可能在连接性的各个方面提供更多信息,但在复杂精神疾病中,静态和动态FNC进行分类的能力尚未进行详细的直接比较。本文提出了一个基于静态和动态FNC特征对精神分裂症、双相情感障碍和健康受试者进行自动分类的框架。此外,我们比较了静态和动态FNC之间的交叉验证分类性能。结果表明,动态FNC在预测准确性方面显著优于静态FNC,这表明动态FNC的特征在分类方面比静态FNC具有明显优势。此外,将静态和动态FNC特征相结合,相对于单独使用动态FNC特征,并没有显著提高分类性能,这表明在分类时,静态FNC与动态FNC相结合并没有增加任何显著信息。基于静态和动态FNC特征的三向分类方法能够高精度地将个体受试者区分为适当的诊断组。我们提出的分类框架可能适用于其他精神障碍。

相似文献

1
Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity.
Neuroimage. 2016 Jul 1;134:645-657. doi: 10.1016/j.neuroimage.2016.04.051. Epub 2016 Apr 23.
4
A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia.
MAGMA. 2010 Dec;23(5-6):351-66. doi: 10.1007/s10334-010-0197-8. Epub 2010 Feb 17.
8
The overlap across psychotic disorders: A functional network connectivity analysis.
Int J Psychophysiol. 2024 Jul;201:112354. doi: 10.1016/j.ijpsycho.2024.112354. Epub 2024 Apr 24.
10
Abnormal static and dynamic brain network connectivity associated with chronic tinnitus.
Neuroscience. 2024 Aug 30;554:26-33. doi: 10.1016/j.neuroscience.2024.06.034. Epub 2024 Jul 2.

引用本文的文献

1
Identifying dynamic reproducible brain states using a predictive modelling approach.
Imaging Neurosci (Camb). 2025 Apr 17;3. doi: 10.1162/imag_a_00540. eCollection 2025.
2
Altered brain state dynamics between preterm and term-born infants.
Imaging Neurosci (Camb). 2025 Jul 7;3. doi: 10.1162/IMAG.a.65. eCollection 2025.
6
Dynamic Resting-State Network Markers of Disruptive Behavior Problems in Youth.
bioRxiv. 2025 May 20:2025.05.15.654366. doi: 10.1101/2025.05.15.654366.
9
A Statistical Characterization of Dynamic Brain Functional Connectivity.
Hum Brain Mapp. 2025 Feb 1;46(2):e70145. doi: 10.1002/hbm.70145.
10

本文引用的文献

1
Identification of Distinct Psychosis Biotypes Using Brain-Based Biomarkers.
Am J Psychiatry. 2016 Apr 1;173(4):373-84. doi: 10.1176/appi.ajp.2015.14091200. Epub 2015 Dec 7.
2
Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information.
Neuroimage. 2015 Oct 15;120:133-42. doi: 10.1016/j.neuroimage.2015.07.002. Epub 2015 Jul 8.
3
Comparison of PCA approaches for very large group ICA.
Neuroimage. 2015 Sep;118:662-6. doi: 10.1016/j.neuroimage.2015.05.047. Epub 2015 May 27.
5
The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery.
Neuron. 2014 Oct 22;84(2):262-74. doi: 10.1016/j.neuron.2014.10.015.
6
Discriminative analysis of non-linear brain connectivity in schizophrenia: an fMRI Study.
Front Hum Neurosci. 2013 Oct 22;7:702. doi: 10.3389/fnhum.2013.00702. eCollection 2013.
7
Functional connectivity in the developing brain: a longitudinal study from 4 to 9months of age.
Neuroimage. 2014 Jan 1;84:169-80. doi: 10.1016/j.neuroimage.2013.08.038. Epub 2013 Aug 27.
8
Classification of schizophrenia patients based on resting-state functional network connectivity.
Front Neurosci. 2013 Jul 30;7:133. doi: 10.3389/fnins.2013.00133. eCollection 2013.
9
Imaging human connectomes at the macroscale.
Nat Methods. 2013 Jun;10(6):524-39. doi: 10.1038/nmeth.2482.
10
Reimagining psychoses: an agnostic approach to diagnosis.
Schizophr Res. 2013 May;146(1-3):10-6. doi: 10.1016/j.schres.2013.02.022. Epub 2013 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验