Suppr超能文献

将由稀疏的定点自旋标记电子顺磁共振限制引导的从头结构系综预测的尺寸限制扩展到200个残基:BAX的单体和同二聚体形式。

Pushing the size limit of de novo structure ensemble prediction guided by sparse SDSL-EPR restraints to 200 residues: The monomeric and homodimeric forms of BAX.

作者信息

Fischer Axel W, Bordignon Enrica, Bleicken Stephanie, García-Sáez Ana J, Jeschke Gunnar, Meiler Jens

机构信息

Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.

Department of Physics, Freie Universität Berlin, Berlin 14195, Germany.

出版信息

J Struct Biol. 2016 Jul;195(1):62-71. doi: 10.1016/j.jsb.2016.04.014. Epub 2016 Apr 27.

Abstract

Structure determination remains a challenge for many biologically important proteins. In particular, proteins that adopt multiple conformations often evade crystallization in all biologically relevant states. Although computational de novo protein folding approaches often sample biologically relevant conformations, the selection of the most accurate model for different functional states remains a formidable challenge, in particular, for proteins with more than about 150 residues. Electron paramagnetic resonance (EPR) spectroscopy can obtain limited structural information for proteins in well-defined biological states and thereby assist in selecting biologically relevant conformations. The present study demonstrates that de novo folding methods are able to accurately sample the folds of 192-residue long soluble monomeric Bcl-2-associated X protein (BAX). The tertiary structures of the monomeric and homodimeric forms of BAX were predicted using the primary structure as well as 25 and 11 EPR distance restraints, respectively. The predicted models were subsequently compared to respective NMR/X-ray structures of BAX. EPR restraints improve the protein-size normalized root-mean-square-deviation (RMSD100) of the most accurate models with respect to the NMR/crystal structure from 5.9Å to 3.9Å and from 5.7Å to 3.3Å, respectively. Additionally, the model discrimination is improved, which is demonstrated by an improvement of the enrichment from 5% to 15% and from 13% to 21%, respectively.

摘要

对于许多具有生物学重要性的蛋白质而言,结构测定仍然是一项挑战。特别是那些具有多种构象的蛋白质,往往无法在所有生物学相关状态下结晶。尽管从头计算蛋白质折叠方法通常能够对生物学相关构象进行采样,但为不同功能状态选择最准确模型仍然是一项艰巨的挑战,尤其是对于含有超过约150个残基的蛋白质。电子顺磁共振(EPR)光谱能够获取处于明确生物学状态的蛋白质的有限结构信息,从而有助于选择生物学相关构象。本研究表明,从头折叠方法能够准确地对192个残基长的可溶性单体Bcl-2相关X蛋白(BAX)的折叠进行采样。分别使用一级结构以及25个和11个EPR距离约束预测了BAX单体和同二聚体形式的三级结构。随后将预测模型与BAX各自的NMR/X射线结构进行了比较。EPR约束分别将最准确模型相对于NMR/晶体结构的蛋白质大小归一化均方根偏差(RMSD100)从5.9Å提高到3.9Å,从5.7Å提高到3.3Å。此外,模型辨别能力得到了提高,这分别通过富集率从5%提高到15%以及从13%提高到21%得以证明。

相似文献

2
BCL::MP-fold: Membrane protein structure prediction guided by EPR restraints.
Proteins. 2015 Nov;83(11):1947-62. doi: 10.1002/prot.24801. Epub 2015 Sep 28.
3
Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination.
J Struct Biol. 2011 Mar;173(3):549-57. doi: 10.1016/j.jsb.2010.11.003. Epub 2010 Nov 11.
4
RosettaEPR: an integrated tool for protein structure determination from sparse EPR data.
J Struct Biol. 2011 Mar;173(3):506-14. doi: 10.1016/j.jsb.2010.10.013. Epub 2010 Oct 26.
5
De novo high-resolution protein structure determination from sparse spin-labeling EPR data.
Structure. 2008 Feb;16(2):181-95. doi: 10.1016/j.str.2007.11.015.
6
Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.
Structure. 2018 Apr 3;26(4):657-666.e2. doi: 10.1016/j.str.2018.02.006. Epub 2018 Mar 8.
7
Conformational Heterogeneity in the Activation Mechanism of Bax.
Structure. 2017 Aug 1;25(8):1310-1316.e3. doi: 10.1016/j.str.2017.06.009. Epub 2017 Jul 14.
8
Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics.
Chempluschem. 2024 Jan;89(1):e202300506. doi: 10.1002/cplu.202300506. Epub 2023 Oct 25.
9
Spin labeling and Double Electron-Electron Resonance (DEER) to Deconstruct Conformational Ensembles of HIV Protease.
Methods Enzymol. 2015;564:153-87. doi: 10.1016/bs.mie.2015.07.019. Epub 2015 Sep 1.
10
Distance measurements by continuous wave EPR spectroscopy to monitor protein folding.
Methods Mol Biol. 2011;752:73-96. doi: 10.1007/978-1-60327-223-0_6.

引用本文的文献

1
The contribution of modern EPR to structural biology.
Emerg Top Life Sci. 2018 Apr 20;2(1):9-18. doi: 10.1042/ETLS20170143.
2
Hybrid methods for combined experimental and computational determination of protein structure.
J Chem Phys. 2020 Dec 28;153(24):240901. doi: 10.1063/5.0026025.
3
Rapid Simulation of Unprocessed DEER Decay Data for Protein Fold Prediction.
Biophys J. 2020 Jan 21;118(2):366-375. doi: 10.1016/j.bpj.2019.12.011. Epub 2019 Dec 18.
4
Predicting Protein Complex Structure from Surface-Induced Dissociation Mass Spectrometry Data.
ACS Cent Sci. 2019 Aug 28;5(8):1330-1341. doi: 10.1021/acscentsci.8b00912. Epub 2019 Jul 2.
5
Topology of active, membrane-embedded Bax in the context of a toroidal pore.
Cell Death Differ. 2018 Nov;25(10):1717-1731. doi: 10.1038/s41418-018-0184-6. Epub 2018 Sep 5.
6
Conformational Heterogeneity in the Activation Mechanism of Bax.
Structure. 2017 Aug 1;25(8):1310-1316.e3. doi: 10.1016/j.str.2017.06.009. Epub 2017 Jul 14.
8
Applications of contact predictions to structural biology.
IUCrJ. 2017 Apr 18;4(Pt 3):291-300. doi: 10.1107/S2052252517005115. eCollection 2017 May 1.

本文引用的文献

1
BCL::MP-fold: Membrane protein structure prediction guided by EPR restraints.
Proteins. 2015 Nov;83(11):1947-62. doi: 10.1002/prot.24801. Epub 2015 Sep 28.
2
CASP10-BCL::Fold efficiently samples topologies of large proteins.
Proteins. 2015 Mar;83(3):547-63. doi: 10.1002/prot.24733.
3
Structural model of active Bax at the membrane.
Mol Cell. 2014 Nov 20;56(4):496-505. doi: 10.1016/j.molcel.2014.09.022. Epub 2014 Oct 30.
4
Apoptotic pore formation is associated with in-plane insertion of Bak or Bax central helices into the mitochondrial outer membrane.
Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):E4076-85. doi: 10.1073/pnas.1415142111. Epub 2014 Sep 16.
5
Pulsed EPR distance measurements in soluble proteins by site-directed spin labeling (SDSL).
Curr Protoc Protein Sci. 2013 Nov 5;74:17.17.1-17.17.29. doi: 10.1002/0471140864.ps1717s74.
6
Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy.
Nat Rev Mol Cell Biol. 2014 Jan;15(1):49-63. doi: 10.1038/nrm3722.
7
BCL::MP-fold: folding membrane proteins through assembly of transmembrane helices.
Structure. 2013 Jul 2;21(7):1107-17. doi: 10.1016/j.str.2013.04.022. Epub 2013 May 30.
9
Simultaneous prediction of protein secondary structure and transmembrane spans.
Proteins. 2013 Jul;81(7):1127-40. doi: 10.1002/prot.24258. Epub 2013 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验