Suppr超能文献

基于DC规划和DCA的高效非负矩阵分解

Efficient Nonnegative Matrix Factorization by DC Programming and DCA.

作者信息

Le Thi Hoai An, Vo Xuan Thanh, Dinh Tao Pham

机构信息

Department for Management of Science and Technology Development and Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam, and Laboratory of Theoretical and Applied Computer Science EA 3097, University of Lorraine, Ile du Saulcy, 57045 Metz, France

Laboratory of Theoretical and Applied Computer Science EA 3097, University of Lorraine, Ile du Saulcy, 57045 Metz, France

出版信息

Neural Comput. 2016 Jun;28(6):1163-216. doi: 10.1162/NECO_a_00836. Epub 2016 May 3.

Abstract

In this letter, we consider the nonnegative matrix factorization (NMF) problem and several NMF variants. Two approaches based on DC (difference of convex functions) programming and DCA (DC algorithm) are developed. The first approach follows the alternating framework that requires solving, at each iteration, two nonnegativity-constrained least squares subproblems for which DCA-based schemes are investigated. The convergence property of the proposed algorithm is carefully studied. We show that with suitable DC decompositions, our algorithm generates most of the standard methods for the NMF problem. The second approach directly applies DCA on the whole NMF problem. Two algorithms-one computing all variables and one deploying a variable selection strategy-are proposed. The proposed methods are then adapted to solve various NMF variants, including the nonnegative factorization, the smooth regularization NMF, the sparse regularization NMF, the multilayer NMF, the convex/convex-hull NMF, and the symmetric NMF. We also show that our algorithms include several existing methods for these NMF variants as special versions. The efficiency of the proposed approaches is empirically demonstrated on both real-world and synthetic data sets. It turns out that our algorithms compete favorably with five state-of-the-art alternating nonnegative least squares algorithms.

摘要

在这封信中,我们考虑非负矩阵分解(NMF)问题以及几种NMF变体。我们开发了基于DC(凸函数之差)规划和DCA(DC算法)的两种方法。第一种方法遵循交替框架,该框架要求在每次迭代时求解两个非负约束最小二乘子问题,并对基于DCA的方案进行了研究。我们仔细研究了所提出算法的收敛性。我们表明,通过适当的DC分解,我们的算法生成了NMF问题的大多数标准方法。第二种方法直接将DCA应用于整个NMF问题。我们提出了两种算法,一种计算所有变量,另一种采用变量选择策略。然后,我们将所提出的方法应用于求解各种NMF变体,包括非负分解、平滑正则化NMF、稀疏正则化NMF、多层NMF、凸/凸包NMF和对称NMF。我们还表明,我们的算法包括用于这些NMF变体的几种现有方法作为特殊版本。我们通过实际数据集和合成数据集实证证明了所提出方法的效率。结果表明,我们的算法与五种最先进的交替非负最小二乘算法相比具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验