Suppr超能文献

应变增强的应力松弛影响胶原凝胶中的非线性弹性。

Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels.

作者信息

Nam Sungmin, Hu Kenneth H, Butte Manish J, Chaudhuri Ovijit

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA 94305;

Biophysics Program, Stanford University, Stanford, CA 94305;

出版信息

Proc Natl Acad Sci U S A. 2016 May 17;113(20):5492-7. doi: 10.1073/pnas.1523906113. Epub 2016 May 2.

Abstract

The extracellular matrix (ECM) is a complex assembly of structural proteins that provides physical support and biochemical signaling to cells in tissues. The mechanical properties of the ECM have been found to play a key role in regulating cell behaviors such as differentiation and malignancy. Gels formed from ECM protein biopolymers such as collagen or fibrin are commonly used for 3D cell culture models of tissue. One of the most striking features of these gels is that they exhibit nonlinear elasticity, undergoing strain stiffening. However, these gels are also viscoelastic and exhibit stress relaxation, with the resistance of the gel to a deformation relaxing over time. Recent studies have suggested that cells sense and respond to both nonlinear elasticity and viscoelasticity of ECM, yet little is known about the connection between nonlinear elasticity and viscoelasticity. Here, we report that, as strain is increased, not only do biopolymer gels stiffen but they also exhibit faster stress relaxation, reducing the timescale over which elastic energy is dissipated. This effect is not universal to all biological gels and is mediated through weak cross-links. Mechanistically, computational modeling and atomic force microscopy (AFM) indicate that strain-enhanced stress relaxation of collagen gels arises from force-dependent unbinding of weak bonds between collagen fibers. The broader effect of strain-enhanced stress relaxation is to rapidly diminish strain stiffening over time. These results reveal the interplay between nonlinear elasticity and viscoelasticity in collagen gels, and highlight the complexity of the ECM mechanics that are likely sensed through cellular mechanotransduction.

摘要

细胞外基质(ECM)是一种由结构蛋白组成的复杂集合体,为组织中的细胞提供物理支撑和生化信号。人们发现ECM的力学特性在调节细胞行为(如分化和恶性转化)中起着关键作用。由ECM蛋白生物聚合物(如胶原蛋白或纤维蛋白)形成的凝胶常用于组织的三维细胞培养模型。这些凝胶最显著的特征之一是它们表现出非线性弹性,即应变硬化。然而,这些凝胶也是粘弹性的,表现出应力松弛,凝胶对变形的阻力会随着时间而松弛。最近的研究表明,细胞能够感知并响应ECM的非线性弹性和粘弹性,但对于非线性弹性和粘弹性之间的联系却知之甚少。在此,我们报告,随着应变增加,生物聚合物凝胶不仅会变硬,而且还会表现出更快的应力松弛,从而缩短弹性能量耗散的时间尺度。这种效应并非所有生物凝胶都具有,而是由弱交联介导的。从机制上讲,计算建模和原子力显微镜(AFM)表明,胶原蛋白凝胶的应变增强应力松弛源于胶原纤维之间弱键的力依赖性解离。应变增强应力松弛的更广泛影响是随着时间的推移迅速减弱应变硬化。这些结果揭示了胶原蛋白凝胶中非线性弹性和粘弹性之间的相互作用,并突出了可能通过细胞机械转导感知的ECM力学的复杂性。

相似文献

1
Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels.
Proc Natl Acad Sci U S A. 2016 May 17;113(20):5492-7. doi: 10.1073/pnas.1523906113. Epub 2016 May 2.
2
Viscoplasticity Enables Mechanical Remodeling of Matrix by Cells.
Biophys J. 2016 Nov 15;111(10):2296-2308. doi: 10.1016/j.bpj.2016.10.002.
3
Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy.
Acta Biomater. 2024 Jun;181:272-281. doi: 10.1016/j.actbio.2024.03.028. Epub 2024 Apr 28.
5
Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils.
Acta Biomater. 2023 Jun;163:63-77. doi: 10.1016/j.actbio.2022.03.005. Epub 2022 Mar 5.
7
Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
Nature. 2019 Sep;573(7772):96-101. doi: 10.1038/s41586-019-1516-5. Epub 2019 Aug 28.
8
Nonlinear elasticity in biological gels.
Nature. 2005 May 12;435(7039):191-4. doi: 10.1038/nature03521.
10
Matrix viscoelasticity promotes liver cancer progression in the pre-cirrhotic liver.
Nature. 2024 Feb;626(7999):635-642. doi: 10.1038/s41586-023-06991-9. Epub 2024 Jan 31.

引用本文的文献

1
Immunomodulatory properties of mesenchymal stem cells within three-dimensional collagen matrices.
In Vitro Cell Dev Biol Anim. 2025 Sep 15. doi: 10.1007/s11626-025-01109-z.
2
The role of dynamic reciprocity in 3D cell migration: connecting cell and matrix mechanics to migratory plasticity.
NPJ Biol Phys Mech. 2025;2(1):21. doi: 10.1038/s44341-025-00027-1. Epub 2025 Sep 3.
3
The role of non-linear viscoelastic hydrogel mechanics in cell culture and transduction.
Mater Today Bio. 2025 Aug 9;34:102188. doi: 10.1016/j.mtbio.2025.102188. eCollection 2025 Oct.
5
Targeted elimination of mesenchymal-like cancer cells through cyclic stretch activation of Piezo1 channels: the physical aspects.
Biophys Rev. 2025 Mar 19;17(3):847-865. doi: 10.1007/s12551-025-01304-y. eCollection 2025 Jun.
6
Interplay of actin nematodynamics and anisotropic tension controls endothelial mechanics.
Nat Phys. 2025;21(6):999-1008. doi: 10.1038/s41567-025-02847-3. Epub 2025 Apr 18.
7
Viscoelasticity of ECM and cells-origin, measurement and correlation.
Mechanobiol Med. 2024 Jul 31;2(4):100082. doi: 10.1016/j.mbm.2024.100082. eCollection 2024 Dec.
9
Enhancing Form Stability: Shrink-Resistant Hydrogels Made of Interpenetrating Networks of Recombinant Spider Silk and Collagen-I.
Adv Healthc Mater. 2025 May;14(12):e2500311. doi: 10.1002/adhm.202500311. Epub 2025 Mar 27.
10
Design and Fabrication of Viscoelastic Hydrogels as Extracellular Matrix Mimicry for Cell Engineering.
Chem Bio Eng. 2024 Oct 8;1(11):916-933. doi: 10.1021/cbe.4c00129. eCollection 2024 Dec 26.

本文引用的文献

1
Hydrogels with tunable stress relaxation regulate stem cell fate and activity.
Nat Mater. 2016 Mar;15(3):326-34. doi: 10.1038/nmat4489. Epub 2015 Nov 30.
2
Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels.
Nat Mater. 2016 Mar;15(3):318-25. doi: 10.1038/nmat4483. Epub 2015 Nov 30.
3
Stress controls the mechanics of collagen networks.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9573-8. doi: 10.1073/pnas.1504258112. Epub 2015 Jul 20.
4
On the tear resistance of skin.
Nat Commun. 2015 Mar 27;6:6649. doi: 10.1038/ncomms7649.
5
Substrate stress relaxation regulates cell spreading.
Nat Commun. 2015 Feb 19;6:6364. doi: 10.1038/ncomms7365.
6
Interplay of matrix stiffness and protein tethering in stem cell differentiation.
Nat Mater. 2014 Oct;13(10):979-87. doi: 10.1038/nmat4051. Epub 2014 Aug 10.
8
Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems.
Adv Mater. 2014 Feb 12;26(6):865-72. doi: 10.1002/adma.201303680. Epub 2013 Oct 11.
9
Strain history dependence of the nonlinear stress response of fibrin and collagen networks.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12197-202. doi: 10.1073/pnas.1222787110. Epub 2013 Jun 10.
10
Effects of non-linearity on cell-ECM interactions.
Exp Cell Res. 2013 Oct 1;319(16):2481-9. doi: 10.1016/j.yexcr.2013.05.017. Epub 2013 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验