Dai Zhiyu, Li Ming, Wharton John, Zhu Maggie M, Zhao You-Yang
From Department of Pharmacology (Z.D., M.L., M.M.Z., Y.-Y.Z.) and Center for Lung and Vascular Biology (Z.D., M.L., M.M.Z., Y.-Y.Z.), University of Illinois College of Medicine, Chicago; and Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College of London, Hammersmith Hospital, UK (J.W.).
Circulation. 2016 Jun 14;133(24):2447-58. doi: 10.1161/CIRCULATIONAHA.116.021494. Epub 2016 Apr 25.
Vascular occlusion and complex plexiform lesions are hallmarks of the pathology of severe pulmonary arterial hypertension (PAH) in patients. However, the mechanisms of obliterative vascular remodeling remain elusive; hence, current therapies have not targeted the fundamental disease-modifying mechanisms and result in only modest improvement in morbidity and mortality.
Mice with Tie2Cre-mediated disruption of Egln1 (encoding prolyl-4 hydroxylase 2 [PHD2]; Egln1(Tie2)) in endothelial cells and hematopoietic cells exhibited spontaneous severe PAH with extensive pulmonary vascular remodeling, including vascular occlusion and plexiform-like lesions, resembling the hallmarks of the pathology of clinical PAH. As seen in patients with idiopathic PAH, Egln1(Tie2) mice exhibited unprecedented right ventricular hypertrophy and failure and progressive mortality. Consistently, PHD2 expression was diminished in lung endothelial cells of obliterated pulmonary vessels in patients with idiopathic PAH. Genetic deletions of both Egln1 and Hif1a or Egln1 and Hif2a identified hypoxia-inducible factor-2α as the critical mediator of the severe PAH seen in Egln1(Tie2) mice. We also observed altered expression of many pulmonary hypertension-causing genes in Egln1(Tie2) lungs, which was normalized in Egln1(Tie2)/Hif2a(Tie2) lungs. PHD2-deficient endothelial cells promoted smooth muscle cell proliferation in part through hypoxia-inducible factor-2α-activated CXCL12 expression. Genetic deletion of Cxcl12 attenuated PAH in Egln1(Tie2) mice.
These studies defined an unexpected role of PHD2 deficiency in the mechanisms of severe PAH and identified the first genetically modified mouse model with obliterative vascular remodeling and pathophysiology recapitulating clinical PAH. Thus, targeting PHD2/hypoxia-inducible factor-2α signaling is a promising strategy to reverse vascular remodeling for treatment of severe PAH.
血管闭塞和复杂的丛状病变是重度肺动脉高压(PAH)患者病理特征。然而,闭塞性血管重塑的机制仍不清楚;因此,目前的治疗方法尚未针对根本性的疾病改善机制,仅能使发病率和死亡率得到适度改善。
在内皮细胞和造血细胞中通过Tie2Cre介导破坏Egln1(编码脯氨酰-4羟化酶2 [PHD2];Egln1(Tie2))的小鼠表现出自发性重度PAH,伴有广泛的肺血管重塑,包括血管闭塞和丛状样病变,类似于临床PAH的病理特征。正如特发性PAH患者所见,Egln1(Tie2)小鼠出现前所未有的右心室肥厚和衰竭以及进行性死亡。同样,特发性PAH患者闭塞肺血管的肺内皮细胞中PHD2表达降低。Egln1和Hif1a或Egln1和Hif2a的基因缺失确定缺氧诱导因子-2α是Egln1(Tie2)小鼠中重度PAH的关键介质。我们还观察到Egln1(Tie2)肺中许多导致肺动脉高压的基因表达改变,而在Egln1(Tie2)/Hif2a(Tie2)肺中这些表达恢复正常。PHD2缺陷的内皮细胞部分通过缺氧诱导因子-2α激活的CXCL12表达促进平滑肌细胞增殖。Cxcl12的基因缺失减轻了Egln1(Tie2)小鼠的PAH。
这些研究确定了PHD2缺陷在重度PAH机制中的意外作用,并鉴定出首个具有闭塞性血管重塑和重现临床PAH病理生理的基因修饰小鼠模型。因此,靶向PHD2/缺氧诱导因子-2α信号通路是逆转血管重塑以治疗重度PAH的一种有前景的策略。