Mbagwu Michael, French Dustin D, Gill Manjot, Mitchell Christopher, Jackson Kathryn, Kho Abel, Bryar Paul J
Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
JMIR Med Inform. 2016 May 4;4(2):e14. doi: 10.2196/medinform.4732.
Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research.
Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes.
We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities.
Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error.
Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently available, and will be made available online at https://phekb.org.
视力是眼科用于确定患者视力状况的主要指标。在单次患者就诊时,单眼视力可以用多种方式记录(例如,斯内伦视力表、耶格视力单位、字体印刷大小),并且可以记录远视力或近视力。在单次患者就诊时获取每只眼睛的最佳记录视力(BDVA)是使电子眼科临床记录在研究中有用的重要一步。
目前,从电子健康记录(EHR)笔记中高效、准确地获取BDVA的方法有限。我们开发了一种算法,用于从电子眼科临床笔记中的指定字段检测右眼和左眼的BDVA。
我们设计了一种算法,从295218份有视力数据的眼科临床笔记中的指定字段检测BDVA。识别出约5668个独特的响应,并开发了一种算法,将所有独特的响应映射到斯内伦视力的结构化列表。
在研究期间,从总共295218份眼科临床笔记中获取了视力。该算法识别出每只眼睛在指定视力部分的所有视力,并为每只眼睛返回一个单一的BDVA。对100份随机患者笔记进行的临床医生图表审查显示,从这些记录中检测BDVA的准确率为99%,观察到的错误率为1%。
我们的算法成功地从眼科临床笔记中获取了最佳记录的斯内伦远视力,并将各种输入转换为结构化的等效斯内伦列表。据我们所知,我们的工作是首次尝试从大量电子眼科笔记中准确获取视力。使用该算法可以使对评估以患者为中心的视力结果感兴趣的研究小组受益。本研究使用的所有代码目前均可获取,并将在https://phekb.org上在线提供。