Mereghetti Paolo, Maccari Giuseppe, Spampinato Giulia Lia Beatrice, Tozzini Valentina
Center for Nanotechnology and Innovation @NEST, Istituto Italiano di Tecnologia , Piazza San Silvestro 12, 56127 Pisa, Italy.
NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore , Piazza San Silvestro 12, 56127 Pisa, Italy.
J Phys Chem B. 2016 Aug 25;120(33):8571-9. doi: 10.1021/acs.jpcb.6b02555. Epub 2016 May 18.
The increasing trend in the recent literature on coarse grained (CG) models testifies their impact in the study of complex systems. However, the CG model landscape is variegated: even considering a given resolution level, the force fields are very heterogeneous and optimized with very different parametrization procedures. Along the road for standardization of CG models for biopolymers, here we describe a strategy to aid building and optimization of statistics based analytical force fields and its implementation in the software package AsParaGS (Assisted Parameterization platform for coarse Grained modelS). Our method is based on the use and optimization of analytical potentials, optimized by targeting internal variables statistical distributions by means of the combination of different algorithms (i.e., relative entropy driven stochastic exploration of the parameter space and iterative Boltzmann inversion). This allows designing a custom model that endows the force field terms with a physically sound meaning. Furthermore, the level of transferability and accuracy can be tuned through the choice of statistical data set composition. The method-illustrated by means of applications to helical polypeptides-also involves the analysis of two and three variable distributions, and allows handling issues related to the FF term correlations. AsParaGS is interfaced with general-purpose molecular dynamics codes and currently implements the "minimalist" subclass of CG models (i.e., one bead per amino acid, Cα based). Extensions to nucleic acids and different levels of coarse graining are in the course.
近期文献中粗粒化(CG)模型的增长趋势证明了它们在复杂系统研究中的影响力。然而,CG模型的情况多种多样:即使考虑给定的分辨率水平,力场也非常不均匀,并且通过非常不同的参数化程序进行优化。在生物聚合物CG模型标准化的道路上,我们在此描述一种策略,以辅助构建和优化基于统计的分析力场及其在软件包AsParaGS(粗粒化模型辅助参数化平台)中的实现。我们的方法基于分析势的使用和优化,通过不同算法的组合(即相对熵驱动的参数空间随机探索和迭代玻尔兹曼反演)来针对内部变量的统计分布进行优化。这允许设计一种定制模型,使力场项具有物理上合理的含义。此外,可以通过选择统计数据集的组成来调整可转移性和准确性水平。该方法通过应用于螺旋多肽进行说明,还涉及对两个和三个变量分布的分析,并允许处理与力场项相关性相关的问题。AsParaGS与通用分子动力学代码接口,目前实现了CG模型的“极简主义”子类(即每个氨基酸一个珠子,基于Cα)。对核酸和不同粗粒化水平的扩展正在进行中。