Suppr超能文献

杏仁核和听觉皮层锥体神经元在厌恶经历后的活动依赖性结构可塑性。

Activity-dependent structural plasticity after aversive experiences in amygdala and auditory cortex pyramidal neurons.

作者信息

Gruene Tina, Flick Katelyn, Rendall Sam, Cho Jin Hyung, Gray Jesse, Shansky Rebecca

机构信息

Psychology Department, Northeastern University, Boston, MA, United States.

Psychology Department, Northeastern University, Boston, MA, United States; Genetics Department, Harvard Medical School, Boston, MA, United States.

出版信息

Neuroscience. 2016 Jul 22;328:157-64. doi: 10.1016/j.neuroscience.2016.04.045. Epub 2016 May 4.

Abstract

The brain is highly plastic and undergoes changes in response to many experiences. Learning especially can induce structural remodeling of dendritic spines, which is thought to relate to memory formation. Classical Pavlovian fear conditioning (FC) traditionally pairs an auditory cue with an aversive footshock, and has been widely used to study neural processes underlying associative learning and memory. Past research has found dendritic spine changes after FC in several structures. But, due to heterogeneity of cells within brain structures and limitations of traditional neuroanatomical techniques, it is unclear if all cells included in analyses were actually active during learning processes, even if known circuits are isolated. In this study, we employed a novel approach to analyze structural plasticity explicitly in neurons activated by exposure to either cued or uncued footshocks. We used male and female Arc-dVenus transgenic mice, which express the Venus fluorophore driven by the activity-related Arc promoter, to identify neurons that were active during either scenario. We then targeted fluorescent microinjections to Arc+ and neighboring Arc- neurons in the basolateral area of the amygdala (BLA) and auditory association cortex (TeA). In both BLA and TeA, Arc+ neurons had reduced thin and mushroom spine densities compared to Arc- neurons. This effect was present in males and females alike and also in both cued and uncued shock groups. Overall, this study adds to our understanding of how neuronal activity affects structural plasticity, and represents a methodological advance in the ways we can directly relate structural changes to experience-related neural activity.

摘要

大脑具有高度可塑性,会因许多经历而发生变化。尤其是学习能够诱导树突棘的结构重塑,这被认为与记忆形成有关。经典的巴甫洛夫恐惧条件反射(FC)传统上是将听觉线索与厌恶性足部电击配对,并已被广泛用于研究联想学习和记忆背后的神经过程。过去的研究在几个结构中发现了FC后树突棘的变化。但是,由于脑结构内细胞的异质性以及传统神经解剖技术的局限性,即使已知回路被分离,也不清楚分析中包括的所有细胞在学习过程中是否真的活跃。在本研究中,我们采用了一种新方法,明确分析暴露于有线索或无线索足部电击所激活的神经元中的结构可塑性。我们使用了雄性和雌性Arc-dVenus转基因小鼠,它们由与活动相关的Arc启动子驱动表达金星荧光团,以识别在任何一种情况下活跃的神经元。然后,我们将荧光显微注射靶向杏仁核基底外侧区(BLA)和听觉联合皮层(TeA)中的Arc+和相邻的Arc-神经元。在BLA和TeA中,与Arc-神经元相比,Arc+神经元的细树突棘和蘑菇状树突棘密度均降低。这种效应在雄性和雌性中都存在,在有线索和无线索电击组中也都存在。总体而言,这项研究增进了我们对神经元活动如何影响结构可塑性的理解,并代表了我们将结构变化与经验相关神经活动直接联系起来的方法上的进步。

相似文献

1
Activity-dependent structural plasticity after aversive experiences in amygdala and auditory cortex pyramidal neurons.
Neuroscience. 2016 Jul 22;328:157-64. doi: 10.1016/j.neuroscience.2016.04.045. Epub 2016 May 4.
2
Elevated Arc/Arg 3.1 protein expression in the basolateral amygdala following auditory trace-cued fear conditioning.
Neurobiol Learn Mem. 2013 Nov;106:127-33. doi: 10.1016/j.nlm.2013.07.010. Epub 2013 Jul 24.
3
Pyramidal Neurons in Different Cortical Layers Exhibit Distinct Dynamics and Plasticity of Apical Dendritic Spines.
Front Neural Circuits. 2017 Jun 19;11:43. doi: 10.3389/fncir.2017.00043. eCollection 2017.
4
Fear extinction reverses dendritic spine formation induced by fear conditioning in the mouse auditory cortex.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9306-9311. doi: 10.1073/pnas.1801504115. Epub 2018 Aug 27.
6
Arc expression identifies the lateral amygdala fear memory trace.
Mol Psychiatry. 2016 Mar;21(3):364-75. doi: 10.1038/mp.2015.18. Epub 2015 Mar 24.
7
PACAP increases Arc/Arg 3.1 expression within the extended amygdala after fear conditioning in rats.
Neurobiol Learn Mem. 2019 Jan;157:24-34. doi: 10.1016/j.nlm.2018.11.011. Epub 2018 Nov 17.
8
Opposite effects of fear conditioning and extinction on dendritic spine remodelling.
Nature. 2012 Feb 19;483(7387):87-91. doi: 10.1038/nature10792.
9
Hippocampal neurons with stable excitatory connectivity become part of neuronal representations.
PLoS Biol. 2020 Nov 3;18(11):e3000928. doi: 10.1371/journal.pbio.3000928. eCollection 2020 Nov.

引用本文的文献

1
Tracking conditioned fear in pair-housed mice using deep learning and real-time cue delivery.
Neurobiol Stress. 2025 Jun 19;37:100742. doi: 10.1016/j.ynstr.2025.100742. eCollection 2025 Jul.
2
Tracking Conditioned Fear in Pair-Housed Mice Using Deep Learning and Real-Time Cue Delivery.
bioRxiv. 2025 May 15:2025.05.10.653260. doi: 10.1101/2025.05.10.653260.
3
Rodent models of stress and dendritic plasticity - Implications for psychopathology.
Neurobiol Stress. 2022 Feb 18;17:100438. doi: 10.1016/j.ynstr.2022.100438. eCollection 2022 Mar.
4
Male, but not female, Sprague Dawley rats display enhanced fear learning following acute ethanol withdrawal (hangover).
Pharmacol Biochem Behav. 2021 Sep;208:173229. doi: 10.1016/j.pbb.2021.173229. Epub 2021 Jul 8.
7
Controllable stress elicits circuit-specific patterns of prefrontal plasticity in males, but not females.
Brain Struct Funct. 2019 Jun;224(5):1831-1843. doi: 10.1007/s00429-019-01875-z. Epub 2019 Apr 26.
9
Cued fear memory generalization increases over time.
Learn Mem. 2018 Jun 15;25(7):298-308. doi: 10.1101/lm.047555.118. Print 2018 Jul.
10
Brain-wide maps of expression during fear learning and recall.
Learn Mem. 2017 Mar 22;24(4):169-181. doi: 10.1101/lm.044446.116. Print 2017 Apr.

本文引用的文献

1
Role of Immediate-Early Genes in Synaptic Plasticity and Neuronal Ensembles Underlying the Memory Trace.
Front Mol Neurosci. 2016 Jan 5;8:78. doi: 10.3389/fnmol.2015.00078. eCollection 2015.
2
Labelling and optical erasure of synaptic memory traces in the motor cortex.
Nature. 2015 Sep 17;525(7569):333-8. doi: 10.1038/nature15257. Epub 2015 Sep 9.
3
Arc expression identifies the lateral amygdala fear memory trace.
Mol Psychiatry. 2016 Mar;21(3):364-75. doi: 10.1038/mp.2015.18. Epub 2015 Mar 24.
4
Amygdala microcircuits controlling learned fear.
Neuron. 2014 Jun 4;82(5):966-80. doi: 10.1016/j.neuron.2014.04.042.
6
Elimination of dendritic spines with long-term memory is specific to active circuits.
J Neurosci. 2012 Sep 5;32(36):12570-8. doi: 10.1523/JNEUROSCI.1131-12.2012.
7
8
Opposite effects of fear conditioning and extinction on dendritic spine remodelling.
Nature. 2012 Feb 19;483(7387):87-91. doi: 10.1038/nature10792.
9
A disinhibitory microcircuit for associative fear learning in the auditory cortex.
Nature. 2011 Dec 7;480(7377):331-5. doi: 10.1038/nature10674.
10
Structural dynamics of dendritic spines in memory and cognition.
Trends Neurosci. 2010 Mar;33(3):121-9. doi: 10.1016/j.tins.2010.01.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验