Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands; Delft Project management B.V., Delft University of Technology, Delft, The Netherlands.
Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, TN, USA.
Biochim Biophys Acta Gen Subj. 2017 Jan;1861(1 Pt B):3546-3552. doi: 10.1016/j.bbagen.2016.04.028. Epub 2016 May 4.
The importance of protein dynamics for their biological activity is now well recognized. Different experimental and computational techniques have been employed to study protein dynamics, hierarchy of different processes and the coupling between protein and hydration water dynamics. Yet, understanding the atomistic details of protein dynamics and the role of hydration water remains rather limited.
Based on overview of neutron scattering, molecular dynamic simulations, NMR and dielectric spectroscopy results we present a general picture of protein dynamics covering time scales from faster than ps to microseconds and the influence of hydration water on different relaxation processes.
Internal protein dynamics spread over a wide time range from faster than picosecond to longer than microseconds. We suggest that the structural relaxation in hydrated proteins appears on the microsecond time scale, while faster processes present mostly motion of side groups and some domains. Hydration water plays a crucial role in protein dynamics on all time scales. It controls the coupled protein-hydration water relaxation on 10-100ps time scale. This process defines the friction for slower protein dynamics. Analysis suggests that changes in amount of hydration water affect not only general friction, but also influence significantly the protein's energy landscape.
The proposed atomistic picture of protein dynamics provides deeper understanding of various relaxation processes and their hierarchy, similarity and differences between various biological macromolecules, including proteins, DNA and RNA. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo".
蛋白质动力学对于其生物活性的重要性现在已经得到充分认识。不同的实验和计算技术已被用于研究蛋白质动力学、不同过程的层次结构以及蛋白质与水合动力学之间的耦合。然而,对蛋白质动力学的原子细节以及水合作用的作用的理解仍然相当有限。
基于对中子散射、分子动力学模拟、NMR 和介电光谱结果的综述,我们提出了一个涵盖从快于皮秒到微秒时间尺度的蛋白质动力学的总体图像,以及水合作用对不同弛豫过程的影响。
内部蛋白质动力学在从快于皮秒到长于微秒的广泛时间范围内传播。我们认为,水合蛋白质中的结构弛豫出现在微秒时间尺度上,而更快的过程主要呈现侧基和一些结构域的运动。水合作用在所有时间尺度上都对蛋白质动力学起着至关重要的作用。它控制着在 10-100ps 时间尺度上的蛋白质-水合动力学的耦合弛豫。这个过程定义了较慢的蛋白质动力学的摩擦力。分析表明,水合水量的变化不仅影响一般的摩擦力,而且还显著影响蛋白质的能量景观。
所提出的蛋白质动力学原子图像提供了对各种弛豫过程及其层次结构、各种生物大分子(包括蛋白质、DNA 和 RNA)之间的相似性和差异的更深入理解。本文是题为“科学为生命”特刊的一部分,客座编辑为 Austen Angell 博士、Salvatore Magazù 博士和 Federica Migliardo 博士。