Ocampo Carolina Gabriela, Lareu Jorge Fabricio, Marin Viegas Vanesa Soledad, Mangano Silvina, Loos Andreas, Steinkellner Herta, Petruccelli Silvana
Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
Plant Biotechnol J. 2016 Dec;14(12):2265-2275. doi: 10.1111/pbi.12580. Epub 2016 Jun 14.
Plant-based platforms are extensively used for the expression of recombinant proteins, including monoclonal antibodies. However, to harness the approach effectively and leverage it to its full potential, a better understanding of intracellular processes that affect protein properties is required. In this work, we examined vacuolar (vac) targeting and deposition of the monoclonal antibody (Ab) 14D9 in Nicotiana benthamiana leaves. Two distinct vacuolar targeting signals (KISIA and NIFRGF) were C-terminal fused to the heavy chain of 14D9 (vac-Abs) and compared with secreted and ER-retained variants (sec-Ab, ER-Ab, respectively). Accumulation of ER- and vac-Abs was 10- to 15-fold higher than sec-Ab. N-glycan profiling revealed the predominant presence of plant typical complex fucosylated and xylosylated GnGnXF structures on sec-Ab while vac-Abs carried mainly oligomannosidic (Man 7-9) next to GnGnXF forms. Paucimannosidic glycans (commonly assigned as typical vacuolar) were not detected. Confocal microscopy analysis using RFP fusions showed that sec-Ab-RFP localized in the apoplast while vac-Abs-RFP were exclusively detected in the central vacuole. The data suggest that vac-Abs reached the vacuole by two different pathways: direct transport from the ER bypassing the Golgi (Ab molecules containing Man structures) and trafficking through the Golgi (for Ab molecules containing complex N-glycans). Importantly, vac-Abs were correctly assembled and functionally active. Collectively, we show that the central vacuole is an appropriate compartment for the efficient production of Abs with appropriate post-translational modifications, but also point to a reconsideration of current concepts in plant glycan processing.
基于植物的平台被广泛用于重组蛋白的表达,包括单克隆抗体。然而,为了有效利用这一方法并充分发挥其潜力,需要更好地理解影响蛋白质特性的细胞内过程。在这项工作中,我们研究了单克隆抗体14D9在本氏烟草叶片中的液泡(vac)靶向和沉积。将两个不同的液泡靶向信号(KISIA和NIFRGF)C端融合到14D9的重链上(vac-Abs),并与分泌型和内质网滞留型变体(分别为sec-Ab、ER-Ab)进行比较。内质网型和液泡型抗体的积累量比分泌型抗体高10至15倍。N-聚糖分析表明,sec-Ab上主要存在植物典型的复杂岩藻糖基化和木糖基化的GnGnXF结构,而vac-Abs除了GnGnXF形式外,主要携带低聚甘露糖型(Man 7-9)。未检测到寡甘露糖型聚糖(通常被认为是典型的液泡型)。使用RFP融合蛋白的共聚焦显微镜分析表明,sec-Ab-RFP定位于质外体,而vac-Abs-RFP仅在中央液泡中检测到。数据表明,vac-Abs通过两种不同的途径到达液泡:从内质网直接运输绕过高尔基体(含有Man结构的抗体分子)和通过高尔基体运输(对于含有复杂N-聚糖的抗体分子)。重要的是,vac-Abs能够正确组装并具有功能活性。总体而言,我们表明中央液泡是一个适合高效生产具有适当翻译后修饰抗体的区室,但也指出需要重新考虑植物聚糖加工中的当前概念。