He Jinzhi, Hwang Geelsu, Liu Yuan, Gao Lizeng, Kilpatrick-Liverman LaTonya, Santarpia Peter, Zhou Xuedong, Koo Hyun
State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, USA.
Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, USA.
J Bacteriol. 2016 Sep 9;198(19):2651-61. doi: 10.1128/JB.00021-16. Print 2016 Oct 1.
l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor.
Dental caries is one of the most prevalent and costly infectious diseases worldwide, caused by a biofilm formed on tooth surfaces. Novel strategies that compromise the ability of virulent species to assemble and maintain pathogenic biofilms could be an effective alternative to conventional antimicrobials that indiscriminately kill other oral species, including commensal bacteria. l-Arginine at 1.5% has been shown to be clinically effective in modulating cariogenic biofilms via alkali production by arginolytic bacteria. Using a mixed-species ecological model, we show new mechanisms by which l-arginine disrupts the process of biofilm matrix assembly and the dynamic microbial interactions that are associated with cariogenic biofilm development, without impacting the bacterial viability. These results may aid in the development of enhanced methods to control biofilms using l-arginine.
L-精氨酸是人类唾液中普遍存在的一种氨基酸,是精氨酸分解菌产碱的底物。最近,已证明外源性L-精氨酸可增强口腔生物膜的产碱潜力并破坏其微生物群落,这可能有助于控制龋齿。然而,当细菌在致龋条件下生长时,L-精氨酸暴露可能会使生物膜环境发生额外变化。在此,我们使用含有致龋菌(变形链球菌)和精氨酸分解菌(戈登链球菌)的混合菌种模型,研究了外源性L-精氨酸在蔗糖存在的情况下如何调节生物膜的形成。我们观察到,暴露于1.5%(重量/体积)的L-精氨酸(也是临床有效浓度)可抑制变形链球菌的生长,有利于戈登链球菌占主导地位,并维持内氏放线菌在生物膜内的生长(与载体对照相比)。同时,局部用L-精氨酸处理可使不溶性胞外多糖(EPS)的量大幅减少3倍以上,这显著改变了生物膜的三维(3D)结构。有趣的是,L-精氨酸抑制了与不溶性EPS(gtfB)和细菌素(SMU.150)产生相关的变形链球菌基因,而在生物膜形成过程中,戈登链球菌的spxB表达(产生H2O2)急剧增加,这导致经精氨酸处理的生物膜中H2O2水平升高。这些改变导致EPS基质明显有缺陷,并且在磷灰石表面出现没有任何细菌簇(微菌落)的区域,而经精氨酸处理的生物膜中生物膜 - 磷灰石界面处的原位pH值比载体对照高近一个单位。我们的数据揭示了L-精氨酸影响生物膜基质组装以及与致病性生物膜形成相关的动态微生物相互作用的新生物学特性,表明这种有前景的生物膜破坏剂具有多种作用效能。
龋齿是全球最普遍且成本高昂的传染病之一,由牙齿表面形成的生物膜引起。损害有毒物种组装和维持致病性生物膜能力的新策略可能是传统抗菌药物的有效替代方法,传统抗菌药物会不加区分地杀死包括共生细菌在内的其他口腔物种。已证明1.5%的L-精氨酸通过精氨酸分解菌产碱在调节致龋生物膜方面具有临床效果。使用混合菌种生态模型,我们展示了L-精氨酸破坏生物膜基质组装过程以及与致龋生物膜形成相关的动态微生物相互作用的新机制,而不影响细菌活力。这些结果可能有助于开发使用L-精氨酸控制生物膜的改进方法。