Suppr超能文献

一种对金黄色葡萄球菌和铜绿假单胞菌有效的新型抗菌化合物作用模式的阐明

Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus aureus and Pseudomonas aeruginosa.

作者信息

Gerits Evelien, Blommaert Eline, Lippell Anna, O'Neill Alex J, Weytjens Bram, De Maeyer Dries, Fierro Ana Carolina, Marchal Kathleen, Marchand Arnaud, Chaltin Patrick, Spincemaille Pieter, De Brucker Katrijn, Thevissen Karin, Cammue Bruno P A, Swings Toon, Liebens Veerle, Fauvart Maarten, Verstraeten Natalie, Michiels Jan

机构信息

Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.

School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom.

出版信息

PLoS One. 2016 May 11;11(5):e0155139. doi: 10.1371/journal.pone.0155139. eCollection 2016.

Abstract

Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies.

摘要

由多重耐药菌引起的医院感染和社区获得性感染是一个重大的人类健康问题。因此,迫切需要开发具有新作用方式的抗生素。在本研究中,我们调查了一种新的抗菌化合物SPI031(N-烷基化3,6-二卤代咔唑1-(仲丁基氨基)-3-(3,6-二氯-9H-咔唑-9-基)丙-2-醇)的抗菌特性和作用方式,该化合物先前由我们团队鉴定。这种化合物具有广谱抗菌活性,包括对人类病原体金黄色葡萄球菌和铜绿假单胞菌的活性。我们发现SPI031具有快速杀菌活性(在4倍MIC浓度下30分钟内细菌数量减少7个对数级),并且对SPI031产生耐药性的频率较低。为了阐明SPI031的作用方式,我们进行了大分子合成试验,结果表明SPI031会非特异性抑制大分子生物合成途径。脂质体泄漏和膜通透性研究表明,SPI031会迅速造成膜损伤,这可能是其抗菌活性的主要原因。对SPI031耐药突变体的突变分析、转录组分析以及对该化合物敏感性改变的转座子突变体的鉴定均支持了这些发现。总之,我们的结果表明,SPI031通过造成膜损伤发挥其抗菌活性,这使其成为开发新型抗菌疗法的一个有吸引力的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5be/4864301/b94f3f3539b6/pone.0155139.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验