Thai Duy Hoang, Huckemann Stephan, Gottschlich Carsten
Institute for Mathematical Stochastics, University of Goettingen, Goldschmidtstr. 7, 37077 Goettingen, Germany.
Statistical and Applied Mathematical Science Institute (SAMSI), 19 T. W. Alexander Drive, Research Triangle Park, 27709-4006 NC, United States of America.
PLoS One. 2016 May 12;11(5):e0154160. doi: 10.1371/journal.pone.0154160. eCollection 2016.
Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: 'true' foreground can be labeled as background and features like minutiae can be lost, or conversely 'true' background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available.
指纹识别在许多商业应用中发挥着重要作用,每天都有数以百万计的人使用它,例如用于解锁手机。指纹图像分割通常是大多数指纹算法的第一个处理步骤,它将图像分为前景(即感兴趣区域)和背景。在这一步骤中可能会出现两种类型的错误,这两种错误都会对识别性能产生负面影响:“真正的”前景可能被标记为背景,像细节特征这样的特征可能会丢失;或者相反,“真正的”背景可能被误分类为前景,从而引入虚假特征。本文的贡献有三个方面:第一,我们基于交织软阈值处理的巴特沃斯带通(DHBB)滤波器的方向希尔伯特变换,提出了一种用于纹理提取的新颖的因式分解方向带通(FDB)分割方法。第二,我们为10560幅图像提供了手动标注的地面真值分割作为评估基准。第三,我们对FDB方法与四种最常被引用的指纹分割算法进行了系统的性能比较,结果表明FDB分割方法明显优于这四种广泛使用的方法。FDB方法的基准和实现已公开提供。