Ward Ayobami, Hopkins Jessica, Mckay Matthew, Murray Steve, Jordan Philip W
Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205.
The Jackson Laboratory, Bar Harbor, Maine 04609.
G3 (Bethesda). 2016 Jun 1;6(6):1713-24. doi: 10.1534/g3.116.029462.
Cohesin is an essential structural component of chromosomes that ensures accurate chromosome segregation during mitosis and meiosis. Previous studies have shown that there are cohesin complexes specific to meiosis, required to mediate homologous chromosome pairing, synapsis, recombination, and segregation. Meiosis-specific cohesin complexes consist of two structural maintenance of chromosomes proteins (SMC1α/SMC1β and SMC3), an α-kleisin protein (RAD21, RAD21L, or REC8), and a stromal antigen protein (STAG1, 2, or 3). STAG3 is exclusively expressed during meiosis, and is the predominant STAG protein component of cohesin complexes in primary spermatocytes from mouse, interacting directly with each α-kleisin subunit. REC8 and RAD21L are also meiosis-specific cohesin components. Stag3 mutant spermatocytes arrest in early prophase ("zygotene-like" stage), displaying failed homolog synapsis and persistent DNA damage, as a result of unstable loading of cohesin onto the chromosome axes. Interestingly, Rec8, Rad21L double mutants resulted in an earlier "leptotene-like" arrest, accompanied by complete absence of STAG3 loading. To assess genetic interactions between STAG3 and α-kleisin subunits RAD21L and REC8, our lab generated Stag3, Rad21L, and Stag3, Rec8 double knockout mice, and compared them to the Rec8, Rad21L double mutant. These double mutants are phenotypically distinct from one another, and more severe than each single knockout mutant with regards to chromosome axis formation, cohesin loading, and sister chromatid cohesion. The Stag3, Rad21L, and Stag3, Rec8 double mutants both progress further into prophase I than the Rec8, Rad21L double mutant. Our genetic analysis demonstrates that cohesins containing STAG3 and REC8 are the main complex required for centromeric cohesion, and RAD21L cohesins are required for normal clustering of pericentromeric heterochromatin. Furthermore, the STAG3/REC8 and STAG3/RAD21L cohesins are the primary cohesins required for axis formation.
黏连蛋白是染色体的一种重要结构成分,可确保有丝分裂和减数分裂期间染色体的准确分离。先前的研究表明,存在特定于减数分裂的黏连蛋白复合物,介导同源染色体配对、联会、重组和分离。减数分裂特异性黏连蛋白复合物由两种染色体结构维持蛋白(SMC1α/SMC1β和SMC3)、一种α- kleisin蛋白(RAD21、RAD21L或REC8)和一种基质抗原蛋白(STAG1、2或3)组成。STAG3仅在减数分裂期间表达,是小鼠初级精母细胞中黏连蛋白复合物的主要STAG蛋白成分,直接与每个α- kleisin亚基相互作用。REC8和RAD21L也是减数分裂特异性黏连蛋白成分。Stag3突变的精母细胞停滞在前期早期(“细线期样”阶段),表现出同源染色体联会失败和持续性DNA损伤,这是由于黏连蛋白在染色体轴上的装载不稳定所致。有趣的是,Rec8、Rad21L双突变体导致更早的“细线期样”停滞,同时完全没有STAG3的装载。为了评估STAG3与α- kleisin亚基RAD21L和REC8之间的遗传相互作用,我们实验室构建了Stag3、Rad21L和Stag3、Rec8双敲除小鼠,并将它们与Rec8、Rad21L双突变体进行比较。这些双突变体在表型上彼此不同,并且在染色体轴形成、黏连蛋白装载和姐妹染色单体黏连方面比每个单敲除突变体更严重。Stag3、Rad21L和Stag3、Rec8双突变体在前期I中的进展都比Rec8、Rad21L双突变体更远。我们的遗传分析表明,含有STAG3和REC8的黏连蛋白是着丝粒黏连所需的主要复合物,而RAD21L黏连蛋白是着丝粒周围异染色质正常聚集所必需的。此外,STAG3/REC8和STAG3/RAD21L黏连蛋白是轴形成所需的主要黏连蛋白。