Suppr超能文献

两种木霉属真菌发酵后橙皮和甜菜粕的化学成分及蛋白质富集情况

Chemical composition and protein enrichment of orange peels and sugar beet pulp after fermentation by two Trichoderma species.

作者信息

Ahmadi F, Zamiri M J, Khorvash M, Banihashemi Z, Bayat A R

机构信息

Graduated from College of Agriculture, Shiraz University, Shiraz, Iran;

Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran;

出版信息

Iran J Vet Res. 2015 Winter;16(1):25-30.

Abstract

The present experiment aimed at increasing orange peel and sugar beet pulp protein content through solid-state fermentation by Trichoderma reesei and Trichoderma viride. In vitro digestibility and changes in the chemical composition of the fermented products were determined after seven days of fungal cultivation using gas production tests. The cultivation of T. reesei and T. viride on orange peels decreased neutral detergent soluble content (P<0.01) and increased cellulose, hemicellulose and lignin contents (P<0.01). Changes in fiber fractions were found to be more pronounced with T. viride. The cultivation of T. reesei and T. viride on sugar beet pulp increased neutral detergent soluble content (P<0.01) and decreased cellulose and hemicellulose contents (P<0.01). These changes were more pronounced with T. reesei. The cultivation of T. reesei or T. viride on orange peels or sugar beet pulp increased crude protein content (P<0.01) compared with the unfermented materials; however, the increase was more pronounced for orange peels fermented with T. viride when corrected for weight loss (P<0.05). After 24 and 48 h of incubation, significant decreases in cumulative gas production (P<0.01) were observed in fermented sugar beet pulp and orange peels compared with the unfermented materials. Fungal treatment of orange peels and sugar beet pulp reduced the digestibility of in vitro organic matter, metabolizable energy and average fermentation and gas production rates (P<0.01). The data showed that seven days of solid-state fermentation of orange peels and sugar beet pulp by T. reesei or T. viride can increase their crude protein content.

摘要

本实验旨在通过里氏木霉和绿色木霉进行固态发酵来提高橙皮和甜菜粕的蛋白质含量。在真菌培养7天后,使用产气试验测定发酵产物的体外消化率和化学成分变化。里氏木霉和绿色木霉在橙皮上的培养降低了中性洗涤剂可溶物含量(P<0.01),并增加了纤维素、半纤维素和木质素含量(P<0.01)。发现绿色木霉对纤维组分的变化更为明显。里氏木霉和绿色木霉在甜菜粕上的培养增加了中性洗涤剂可溶物含量(P<0.01),并降低了纤维素和半纤维素含量(P<0.01)。这些变化在里氏木霉作用下更为明显。与未发酵材料相比,里氏木霉或绿色木霉在橙皮或甜菜粕上的培养增加了粗蛋白含量(P<0.01);然而,校正重量损失后,绿色木霉发酵的橙皮粗蛋白含量增加更为明显(P<0.05)。在培养24和48小时后,与未发酵材料相比,发酵甜菜粕和橙皮的累积产气量显著降低(P<0.01)。真菌处理橙皮和甜菜粕降低了体外有机物消化率、代谢能以及平均发酵和产气速率(P<0.01)。数据表明,里氏木霉或绿色木霉对橙皮和甜菜粕进行7天的固态发酵可提高其粗蛋白含量。

相似文献

2
Feed intake, nutrient digestibility and ruminal fermentation activities in sheep-fed peanut hulls treated with Trichoderma viride or urea.
Trop Anim Health Prod. 2014 Jan;46(1):221-8. doi: 10.1007/s11250-013-0479-z. Epub 2013 Oct 2.
3
[Protein enrichment of sugar beet bagasse for fermentation].
Rev Argent Microbiol. 1982;14(2):97-104.
4
Utilization of agro-industrial orange peel and sugar beet pulp wastes for fungal endo- polygalacturonase production.
Saudi J Biol Sci. 2022 Feb;29(2):963-969. doi: 10.1016/j.sjbs.2021.10.005. Epub 2021 Oct 11.
5
6
Using pre-fermented sugar beet pulp as a growth medium to produce Pleurotus ostreatus mycelium for meat alternatives.
Int J Food Microbiol. 2024 Dec 2;425:110872. doi: 10.1016/j.ijfoodmicro.2024.110872. Epub 2024 Aug 15.
7

引用本文的文献

本文引用的文献

1
Feed intake, nutrient digestibility and ruminal fermentation activities in sheep-fed peanut hulls treated with Trichoderma viride or urea.
Trop Anim Health Prod. 2014 Jan;46(1):221-8. doi: 10.1007/s11250-013-0479-z. Epub 2013 Oct 2.
2
Short-term oxidative lime pretreatment of palm pruning waste for use as animal feedstuff.
J Sci Food Agric. 2013 Jun;93(8):2061-70. doi: 10.1002/jsfa.5963. Epub 2012 Dec 12.
3
Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation.
Bioresour Technol. 2012 May;111:336-42. doi: 10.1016/j.biortech.2012.02.001. Epub 2012 Feb 8.
4
Effects of ensilage on storage and enzymatic degradability of sugar beet pulp.
Bioresour Technol. 2011 Jan;102(2):1489-95. doi: 10.1016/j.biortech.2010.09.105. Epub 2010 Oct 29.
5
Biology and biotechnology of Trichoderma.
Appl Microbiol Biotechnol. 2010 Jul;87(3):787-99. doi: 10.1007/s00253-010-2632-1. Epub 2010 May 12.
6
Fungal multienzyme production on industrial by-products of the citrus-processing industry.
Bioresour Technol. 2008 May;99(7):2373-83. doi: 10.1016/j.biortech.2007.05.018. Epub 2007 Jun 28.
7
Fungal solid state culture of palm kernel cake.
Bioresour Technol. 2006 Feb;97(3):477-82. doi: 10.1016/j.biortech.2005.03.005. Epub 2005 Apr 19.
8
Lime treatment of keratinous materials for the generation of highly digestible animal feed: 2. Animal hair.
Bioresour Technol. 2006 Jul;97(11):1344-52. doi: 10.1016/j.biortech.2005.05.017. Epub 2005 Aug 10.
9
Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.
J Dairy Sci. 1991 Oct;74(10):3583-97. doi: 10.3168/jds.S0022-0302(91)78551-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验