Bongers Malte N, Bier Georg, Marcus Roy, Ditt Hendrik, Kloth Christopher, Schabel Christoph, Nikolaou Konstantin, Horger Marius
From the *Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen; and †Siemens Healthcare GmbH, Forchheim, Germany.
Invest Radiol. 2016 Oct;51(10):647-54. doi: 10.1097/RLI.0000000000000293.
Aim of this ex vivo phantom study was to evaluate the contrast enhancement applying a new frequency split nonlinear blending algorithm (best contrast [BC]) and to compare it with standard 120-kV single-energy computed tomography (SECT) images, as well as with low-kiloelectron volt monoenergetic extrapolations (Mono+40-100keV) from dual-energy CT (DECT) and with low-kilovolt (70-100 kV) SECT acquisitions.
A dilution series of iodinated contrast material-filled syringes was centered in an attenuation phantom and was scanned with SECT70-120kV and DECT80-100/Sn150. Monoenergetic images (40-100 keV) were reconstructed, and a new manual frequency split nonlinear blending algorithm (BC) was applied to SECT70kV and SECT120kV images. Manual BC settings were set to simulate a reading situation with fixed overall best values (FVBC120kV) as well as to achieve best possible values for each syringe (BVBC120kV) for maximum contrast enhancement. Contrast-to-noise ratios (CNRs) were used as an objective region of interest-based image analysis parameter. Two radiologists evaluated the detectability of hyperdense and hypodense syringes (Likert). Results were compared between SECT70-100kV, Mono+40-100keV, and DECT80-100/Sn150kV, as well as FVBC120kV, BVBC120kV, and BC70kV.
Highest CNR without BC was detected at SECT70kV (5.04 ± 0.12) and Mono+40keV (4.40 ± 0.11). FVBC and BVBC images allow a significant increase of CNR compared with SECT120kV (CNRBVBC, 5.21 ± 0.15; CNRFVBC, 5.12 ± 0.16; CNRSECT120kV, 2.5 ± 0.08; all P ≤ 0.01). There was no significant difference in CNR between BVBC and FVBC. Averaged CNR in BVBC and FVBC was significantly higher compared with Mono+40-100keV (all P ≤ 0.01). Compared with SECT70kV, averaged CNR in BVBC and FVBC show no significant differences. BVBC70kV (7.67 ± 0.17) significantly increases CNR in SECT70kV up to 213%.Subjective image analysis showed an interobserver agreement of 0.63 to 0.83 (κ), confirming the superiority of BC in detecting hyperdense and hypodense syringes, when compared with SECT120kV. Compared with SECT120kV, BVBC70kV was scored highest, followed by SECT70kV. BVBC showed higher scores when comparing to Mono+40keV, however almost identical to those of SECT70kV. Scores of FVBC were slightly lower than SECT70kV, but in the range of Mono+40keV.
The new frequency split nonlinear blending algorithm with fixed settings offers a superior differentiation of contrast levels from low- to high-contrast settings. Using the optimal settings, this algorithm shows an equivalent contrast enhancement when compared with SECT70kV. Because of the non-DECT-based algorithm of BC, the new method of contrast enhancement seems to be particularly valuable for implementation in CT systems not equipped for dual-energy or spectral CT imaging.
本离体模型研究的目的是评估应用一种新的频率分割非线性融合算法(最佳对比度[BC])的对比增强效果,并将其与标准120 kV单能量计算机断层扫描(SECT)图像、双能量CT(DECT)的低千电子伏特单能外推值(Mono+40 - 100 keV)以及低千伏(70 - 100 kV)SECT采集图像进行比较。
将一系列装有碘化对比剂的稀释注射器置于衰减模型中心,分别用SECT70 - 120 kV和DECT80 - 100/Sn150进行扫描。重建单能图像(40 - 100 keV),并将一种新的手动频率分割非线性融合算法(BC)应用于SECT70 kV和SECT120 kV图像。手动设置BC以模拟具有固定总体最佳值(FVBC120kV)的读片情况,并为每个注射器实现最佳可能值(BVBC120kV)以实现最大对比增强。对比噪声比(CNR)用作基于感兴趣区域的客观图像分析参数。两名放射科医生评估高密度和低密度注射器的可检测性(李克特量表)。比较SECT70 - 100 kV、Mono+40 - 100 keV和DECT80 - 100/Sn150 kV以及FVBC120kV、BVBC120kV和BC70kV之间的结果。
在SECT70 kV(5.04±0.12)和Mono+40 keV(4.40±0.11)时检测到无BC时的最高CNR。与SECT120 kV相比,FVBC和BVBC图像的CNR显著增加(CNRBVBC,5.21±0.15;CNRFVBC,5.12±0.16;CNRSECT120kV,2.5±0.08;所有P≤0.01)。BVBC和FVBC之间的CNR无显著差异。BVBC和FVBC中的平均CNR与Mono+40 - 100 keV相比显著更高(所有P≤0.01)。与SECT70 kV相比,BVBC和FVBC中的平均CNR无显著差异。BVBC70kV(7.67±0.17)使SECT70 kV中的CNR显著增加高达213%。主观图像分析显示观察者间一致性为0.63至0.83(κ),证实与SECT120 kV相比,BC在检测高密度和低密度注射器方面具有优越性。与SECT120 kV相比,BVBC70kV得分最高,其次是SECT70 kV。与Mono+40 keV相比,BVBC得分更高,但与SECT70 kV几乎相同。FVBC得分略低于SECT70 kV,但在Mono+40 keV范围内。
具有固定设置的新频率分割非线性融合算法在从低对比度到高对比度设置的对比水平区分方面具有优越性。使用最佳设置时,该算法与SECT70 kV相比显示出等效的对比增强。由于BC是基于非DECT的算法,这种新的对比增强方法对于未配备双能量或光谱CT成像的CT系统的实施似乎特别有价值。