Suppr超能文献

碰撞风险:自行车流量如何有助于解释碰撞数据。

Crash risk: How cycling flow can help explain crash data.

作者信息

Dozza Marco

机构信息

Chalmers University of Technology, SAFER, Lindholmspiren 3, Floor 2, 417 56 Göteborg, Sweden.

出版信息

Accid Anal Prev. 2017 Aug;105:21-29. doi: 10.1016/j.aap.2016.04.033. Epub 2016 May 12.

Abstract

Crash databases are commonly queried to infer crash causation, prioritize countermeasures to prevent crashes, and evaluate safety systems. However, crash databases, which may be compiled from police and hospital records, alone cannot provide estimates of crash risk. Moreover, they fail to capture road user behavior before the crash. In Sweden, as in many other countries, crash databases are particularly sterile when it comes to bicycle crashes. In fact, not only are bicycle crashes underreported in police reports, they are also poorly documented in hospital reports. Nevertheless, these reports are irreplaceable sources of information, clearly highlighting the surprising prevalence of single-bicycle crashes and hinting at some cyclist behaviors, such as alcohol consumption, that may increase crash risk. In this study, we used exposure data from 11 roadside stations measuring cyclist flow in Gothenburg to help explain crash data and estimate risk. For instance, our results show that crash risk is greatest at night on weekends, and that this risk is larger for single-bicycle crashes than for crashes between a cyclist and another motorist. This result suggests that the population of night-cyclists on weekend nights is particularly prone to specific crash types, which may be influenced by specific contributing factors (such as alcohol), and may require specific countermeasures. Most importantly, our results demonstrate that detailed exposure data can help select, filter, aggregate, highlight, and normalize crash data to obtain a sharper view of the cycling safety problem, to achieve a more fine-tuned intervention.

摘要

人们通常会查询碰撞数据库,以推断碰撞原因、确定预防碰撞的对策优先级并评估安全系统。然而,仅由警方和医院记录汇编而成的碰撞数据库本身无法提供碰撞风险的估计值。此外,它们无法捕捉碰撞发生前道路使用者的行为。在瑞典,与许多其他国家一样,在涉及自行车碰撞时,碰撞数据库的信息特别匮乏。事实上,自行车碰撞不仅在警方报告中上报不足,在医院报告中的记录也很差。尽管如此,这些报告仍是不可替代的信息来源,清楚地凸显了单车碰撞惊人的普遍性,并暗示了一些可能增加碰撞风险的骑车人行为,比如饮酒。在本研究中,我们使用了来自哥德堡11个路边站点的流量数据来帮助解释碰撞数据并估计风险。例如,我们的结果表明,周末夜间的碰撞风险最高,而且单车碰撞的风险比骑车人与其他驾车者之间碰撞的风险更大。这一结果表明,周末夜间的骑车人群体特别容易发生特定类型的碰撞,这可能受到特定促成因素(如酒精)的影响,可能需要采取特定的对策。最重要的是,我们的结果表明,详细的流量数据有助于选择、筛选、汇总、突出显示和规范碰撞数据,从而更清晰地了解自行车安全问题,实现更精准的干预。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验