Suppr超能文献

通过小角度 X 射线散射研究 DNA 折纸纳米结构的形状和螺旋间距。

Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering.

机构信息

Fakultät für Physik and Center for NanoScience, Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz 1, 80539 München, Germany.

出版信息

Nano Lett. 2016 Jul 13;16(7):4282-7. doi: 10.1021/acs.nanolett.6b01335. Epub 2016 Jun 8.

Abstract

Scaffolded DNA origami nanostructures enable the self-assembly of arbitrarily shaped objects with unprecedented accuracy. Yet, varying physiological conditions are prone to induce slight structural changes in the nanoscale architecture. Here, we report on high precision measurements of overall shape and interhelical distance of three prototypic DNA origami structures in solution using synchrotron small-angle X-ray scattering. Sheet-, brick-, and cylinder-shaped DNA constructs were assembled and the shape factors determined with angstrom resolution from fits to the scattering profiles. With decreasing MgCl2 concentration electrostatic swelling of both shape cross section and interhelical DNA spacing of the DNA origami structures is observed. The structures tolerate up to 10% interhelical expansion before they disintegrate. In contrast, with increasing temperature, the cylinder-shaped structures show no thermal expansion in a wide temperature window before they abruptly melt above 50 °C. Details on molecular structure of DNA origami can also be obtained using in-house X-ray scattering equipment and, hence, allow for routine folding and stability testing of DNA-based agents that are designed to operate under varying salt conditions.

摘要

支架 DNA 折纸纳米结构能够以前所未有的精度实现任意形状物体的自组装。然而,不同的生理条件容易导致纳米结构的微小结构变化。在这里,我们使用同步加速器小角度 X 射线散射报告了三种典型 DNA 折纸结构在溶液中整体形状和螺旋间距离的高精度测量。我们组装了片状、块状和圆柱形 DNA 结构,并通过对散射曲线的拟合,以埃分辨率确定了形状因子。随着 MgCl2 浓度的降低,DNA 折纸结构的形状截面和螺旋间 DNA 间距的静电膨胀都被观察到。这些结构在解体之前可以容忍高达 10%的螺旋扩展。相比之下,随着温度的升高,圆柱形结构在 50°C 以上突然熔化之前,在很宽的温度范围内都没有热膨胀。使用内部 X 射线散射设备还可以获得 DNA 折纸的详细分子结构,从而可以对设计用于在不同盐条件下工作的基于 DNA 的试剂进行常规折叠和稳定性测试。

相似文献

1
Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering.
Nano Lett. 2016 Jul 13;16(7):4282-7. doi: 10.1021/acs.nanolett.6b01335. Epub 2016 Jun 8.
2
Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch.
Nano Lett. 2018 Apr 11;18(4):2672-2676. doi: 10.1021/acs.nanolett.8b00592. Epub 2018 Mar 27.
3
Position Accuracy of Gold Nanoparticles on DNA Origami Structures Studied with Small-Angle X-ray Scattering.
Nano Lett. 2018 Apr 11;18(4):2609-2615. doi: 10.1021/acs.nanolett.8b00412. Epub 2018 Mar 6.
4
pH-Induced Symmetry Conversion of DNA Origami Lattices.
Angew Chem Int Ed Engl. 2022 Oct 4;61(40):e202208290. doi: 10.1002/anie.202208290. Epub 2022 Aug 25.
5
Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering.
ACS Nano. 2018 Jun 26;12(6):5791-5799. doi: 10.1021/acsnano.8b01669. Epub 2018 Jun 4.
6
Conformational Changes and Flexibility of DNA Devices Observed by Small-Angle X-ray Scattering.
Nano Lett. 2016 Aug 10;16(8):4871-9. doi: 10.1021/acs.nanolett.6b01338. Epub 2016 Jul 27.
7
Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide.
Electrophoresis. 2015 Jan;36(2):255-62. doi: 10.1002/elps.201400323. Epub 2014 Oct 27.
8
Isothermal assembly of DNA origami structures using denaturing agents.
J Am Chem Soc. 2008 Aug 6;130(31):10062-3. doi: 10.1021/ja8030196. Epub 2008 Jul 10.
9
Effect of Ionic Strength on the Thermal Stability of DNA Origami Nanostructures.
Chembiochem. 2023 Jun 15;24(12):e202300338. doi: 10.1002/cbic.202300338. Epub 2023 May 17.

引用本文的文献

1
Revolutionizing tumor diagnosis and treatment: the promise of DNA nanotechnology.
Front Immunol. 2025 Aug 29;16:1637539. doi: 10.3389/fimmu.2025.1637539. eCollection 2025.
2
DNA origami signal amplification in lateral flow immunoassays.
Nat Commun. 2025 Apr 4;16(1):3216. doi: 10.1038/s41467-025-57385-6.
3
Structural stability of DNA origami nanostructures in organic solvents.
Nanoscale. 2024 Jul 18;16(28):13407-13415. doi: 10.1039/d4nr02185a.
4
Dominant Analytical Techniques in DNA Nanotechnology for Various Applications.
Anal Chem. 2024 Mar 5;96(9):3687-3697. doi: 10.1021/acs.analchem.3c04176. Epub 2024 Feb 14.
5
Programming the morphology of DNA origami crystals by magnesium ion strength.
Proc Natl Acad Sci U S A. 2023 Jul 11;120(28):e2302142120. doi: 10.1073/pnas.2302142120. Epub 2023 Jul 3.
6
Lyophilization Reduces Aggregation of Three-Dimensional DNA Origami at High Concentrations.
ACS Omega. 2023 May 11;8(20):18225-18233. doi: 10.1021/acsomega.3c01680. eCollection 2023 May 23.
7
A label-free light-scattering method to resolve assembly and disassembly of DNA nanostructures.
Biophys J. 2022 Dec 20;121(24):4800-4809. doi: 10.1016/j.bpj.2022.10.036. Epub 2022 Oct 29.
8
Onset of Chirality in Plasmonic Meta-Molecules and Dielectric Coupling.
ACS Nano. 2022 Oct 25;16(10):16143-16149. doi: 10.1021/acsnano.2c04729. Epub 2022 Oct 14.
9
In situ small-angle X-ray scattering reveals strong condensation of DNA origami during silicification.
Nat Commun. 2022 Sep 27;13(1):5668. doi: 10.1038/s41467-022-33083-5.
10
Far-Field Electrostatic Signatures of Macromolecular 3D Conformation.
Nano Lett. 2022 Oct 12;22(19):7834-7840. doi: 10.1021/acs.nanolett.2c02485. Epub 2022 Sep 20.

本文引用的文献

2
Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules.
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6416-25. doi: 10.1073/pnas.1513172112. Epub 2015 Nov 5.
3
Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames.
Nat Nanotechnol. 2015 Jul;10(7):637-44. doi: 10.1038/nnano.2015.105. Epub 2015 May 25.
4
Nanomaterials. Programmable materials and the nature of the DNA bond.
Science. 2015 Feb 20;347(6224):1260901. doi: 10.1126/science.1260901.
5
Addressing the instability of DNA nanostructures in tissue culture.
ACS Nano. 2014 Sep 23;8(9):8765-75. doi: 10.1021/nn503513p. Epub 2014 Aug 22.
7
In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20099-104. doi: 10.1073/pnas.1316521110. Epub 2013 Nov 25.
8
Nucleic acid nanostructures for biomedical applications.
Nanomedicine (Lond). 2013 Jan;8(1):105-21. doi: 10.2217/nnm.12.184.
9
Rapid folding of DNA into nanoscale shapes at constant temperature.
Science. 2012 Dec 14;338(6113):1458-61. doi: 10.1126/science.1229919.
10
Modeling the mechanical properties of DNA nanostructures.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):051912. doi: 10.1103/PhysRevE.86.051912. Epub 2012 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验