Huang Jin, Ghosh Ratna, Tripathi Ashutosh, Lönnfors Max, Somerharju Pentti, Bankaitis Vytas A
Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Sciences Center, College Station, TX 77843-1114.
Faculty of Medicine, Department of Biochemistry and Developmental Biology, University of Helsinki, 00290 Helsinki, Finland.
Mol Biol Cell. 2016 Jul 15;27(14):2317-30. doi: 10.1091/mbc.E16-04-0221. Epub 2016 May 18.
Lipid signaling, particularly phosphoinositide signaling, plays a key role in regulating the extreme polarized membrane growth that drives root hair development in plants. The Arabidopsis AtSFH1 gene encodes a two-domain protein with an amino-terminal Sec14-like phosphatidylinositol transfer protein (PITP) domain linked to a carboxy-terminal nodulin domain. AtSfh1 is critical for promoting the spatially highly organized phosphatidylinositol-4,5-bisphosphate signaling program required for establishment and maintenance of polarized root hair growth. Here we demonstrate that, like the yeast Sec14, the AtSfh1 PITP domain requires both its phosphatidylinositol (PtdIns)- and phosphatidylcholine (PtdCho)-binding properties to stimulate PtdIns-4-phosphate [PtdIns(4)P] synthesis. Moreover, we show that both phospholipid-binding activities are essential for AtSfh1 activity in supporting polarized root hair growth. Finally, we report genetic and biochemical evidence that the two-ligand mechanism for potentiation of PtdIns 4-OH kinase activity is a broadly conserved feature of plant Sec14-nodulin proteins, and that this strategy appeared only late in plant evolution. Taken together, the data indicate that the PtdIns/PtdCho-exchange mechanism for stimulated PtdIns(4)P synthesis either arose independently during evolution in yeast and in higher plants, or a suitable genetic module was introduced to higher plants from a fungal source and subsequently exploited by them.
脂质信号传导,尤其是磷酸肌醇信号传导,在调节驱动植物根毛发育的极端极化膜生长中起关键作用。拟南芥AtSFH1基因编码一种双结构域蛋白,其氨基末端有一个类似Sec14的磷脂酰肌醇转移蛋白(PITP)结构域,与羧基末端结节蛋白结构域相连。AtSfh1对于促进极化根毛生长的建立和维持所需的空间高度组织化的磷脂酰肌醇-4,5-二磷酸信号传导程序至关重要。在这里,我们证明,与酵母Sec14一样,AtSfh1 PITP结构域需要其磷脂酰肌醇(PtdIns)和磷脂酰胆碱(PtdCho)结合特性来刺激磷脂酰肌醇-4-磷酸[PtdIns(4)P]的合成。此外,我们表明这两种磷脂结合活性对于AtSfh1在支持极化根毛生长中的活性都是必不可少的。最后,我们报告了遗传和生化证据,表明增强磷脂酰肌醇4-羟基激酶活性的双配体机制是植物Sec14-结节蛋白的一个广泛保守的特征,并且这种策略在植物进化过程中出现得较晚。综上所述,数据表明,刺激PtdIns(4)P合成的PtdIns/PtdCho交换机制要么是在酵母和高等植物的进化过程中独立出现的,要么是一个合适的遗传模块从真菌来源引入到高等植物中,随后被它们利用。