Galloway Thomas A, Hardwick Laurence J
Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom.
J Phys Chem Lett. 2016 Jun 2;7(11):2119-24. doi: 10.1021/acs.jpclett.6b00730. Epub 2016 May 24.
Spectroscopic detection of reaction intermediates upon a variety of electrode surfaces is of major interest within physical chemistry. A notable technique in the study of the electrochemical interface has been surface-enhanced Raman spectroscopy (SERS). The drawback of SERS is that it is limited to roughened gold and silver substrates. Herein we report that shell-isolated nanoparticles for enhanced Raman spectroscopy (SHINERS) can overcome the limitations of SERS and has followed the oxygen reduction reaction (ORR), within a nonaqueous electrolyte, on glassy carbon, gold, palladium, and platinum disk electrodes. The work presented demonstrates SHINERS for spectroelectrochemical studies for applied and fundamental electrochemistry in aprotic electrolytes, especially for the understanding and development of future metal-oxygen battery applications. In particular, we highlight that with the addition of Li(+), both the electrode surface and solvent influence the ORR mechanism, which opens up the possibility of tailoring surfaces to produce desired reaction pathways.
在各种电极表面上对反应中间体进行光谱检测是物理化学领域的主要研究兴趣点。表面增强拉曼光谱(SERS)是研究电化学界面的一项重要技术。SERS的缺点是它仅限于粗糙的金和银基底。在此我们报告,用于增强拉曼光谱的壳层隔离纳米粒子(SHINERS)可以克服SERS的局限性,并且在非水电解质中,在玻碳、金、钯和铂盘电极上跟踪了氧还原反应(ORR)。所展示的工作证明了SHINERS可用于非质子电解质中应用电化学和基础电化学的光谱电化学研究,特别是对于未来金属-氧电池应用的理解和开发。特别是,我们强调,随着Li(+)的加入,电极表面和溶剂都会影响ORR机制,这为定制表面以产生所需反应途径开辟了可能性。