Suppr超能文献

基于体模CT扫描估计肺结节体积的算法变异性:QIBA 3A公开挑战赛的结果

Algorithm Variability in the Estimation of Lung Nodule Volume From Phantom CT Scans: Results of the QIBA 3A Public Challenge.

作者信息

Athelogou Maria, Kim Hyun J, Dima Alden, Obuchowski Nancy, Peskin Adele, Gavrielides Marios A, Petrick Nicholas, Saiprasad Ganesh, Colditz Colditz Dirk, Beaumont Hubert, Oubel Estanislao, Tan Yongqiang, Zhao Binsheng, Kuhnigk Jan-Martin, Moltz Jan Hendrik, Orieux Guillaume, Gillies Robert J, Gu Yuhua, Mantri Ninad, Goldmacher Gregory, Zhang Luduan, Vega Emilio, Bloom Michael, Jarecha Rudresh, Soza Grzegorz, Tietjen Christian, Takeguchi Tomoyuki, Yamagata Hitoshi, Peterson Sam, Masoud Osama, Buckler Andrew J

机构信息

Definiens AG, Bernhard-Wicki Str 5, 80636 Munich, Germany.

UCLA, Center for Computer Vision and Imaging Biomarkers, Dept. of Radiological Sciences David Geffen School of Medicine at UCLA Dept. of Biostatistics Fielding School of Public at UCLA, Los Angeles, USA.

出版信息

Acad Radiol. 2016 Aug;23(8):940-52. doi: 10.1016/j.acra.2016.02.018. Epub 2016 May 20.

Abstract

RATIONALE AND OBJECTIVES

Quantifying changes in lung tumor volume is important for diagnosis, therapy planning, and evaluation of response to therapy. The aim of this study was to assess the performance of multiple algorithms on a reference data set. The study was organized by the Quantitative Imaging Biomarker Alliance (QIBA).

MATERIALS AND METHODS

The study was organized as a public challenge. Computed tomography scans of synthetic lung tumors in an anthropomorphic phantom were acquired by the Food and Drug Administration. Tumors varied in size, shape, and radiodensity. Participants applied their own semi-automated volume estimation algorithms that either did not allow or allowed post-segmentation correction (type 1 or 2, respectively). Statistical analysis of accuracy (percent bias) and precision (repeatability and reproducibility) was conducted across algorithms, as well as across nodule characteristics, slice thickness, and algorithm type.

RESULTS

Eighty-four percent of volume measurements of QIBA-compliant tumors were within 15% of the true volume, ranging from 66% to 93% across algorithms, compared to 61% of volume measurements for all tumors (ranging from 37% to 84%). Algorithm type did not affect bias substantially; however, it was an important factor in measurement precision. Algorithm precision was notably better as tumor size increased, worse for irregularly shaped tumors, and on the average better for type 1 algorithms. Over all nodules meeting the QIBA Profile, precision, as measured by the repeatability coefficient, was 9.0% compared to 18.4% overall.

CONCLUSION

The results achieved in this study, using a heterogeneous set of measurement algorithms, support QIBA quantitative performance claims in terms of volume measurement repeatability for nodules meeting the QIBA Profile criteria.

摘要

原理与目的

量化肺肿瘤体积变化对于诊断、治疗方案规划及治疗反应评估至关重要。本研究旨在评估多种算法在一个参考数据集上的性能。该研究由定量影像生物标志物联盟(QIBA)组织。

材料与方法

本研究组织为一项公开挑战。美国食品药品监督管理局获取了拟人化体模中合成肺肿瘤的计算机断层扫描图像。肿瘤在大小、形状和放射密度方面存在差异。参与者应用了他们自己的半自动体积估计算法,这些算法要么不允许(分别为1型)要么允许(分别为2型)分割后校正。对算法之间以及结节特征、切片厚度和算法类型之间的准确性(偏差百分比)和精密度(重复性和再现性)进行了统计分析。

结果

符合QIBA标准的肿瘤体积测量值中,84%在真实体积的15%以内,各算法的范围为66%至93%,而所有肿瘤体积测量值的这一比例为61%(范围为37%至84%)。算法类型对偏差影响不大;然而,它是测量精密度的一个重要因素。随着肿瘤大小增加,算法精密度显著提高,对于形状不规则的肿瘤精密度较差,总体而言1型算法的精密度更好。在所有符合QIBA标准的结节中,通过重复性系数测量的精密度为9.0%,而总体为18.4%。

结论

本研究使用一组异质的测量算法所取得的结果,在符合QIBA标准的结节体积测量重复性方面,支持了QIBA的定量性能声明。

相似文献

1
Algorithm Variability in the Estimation of Lung Nodule Volume From Phantom CT Scans: Results of the QIBA 3A Public Challenge.
Acad Radiol. 2016 Aug;23(8):940-52. doi: 10.1016/j.acra.2016.02.018. Epub 2016 May 20.
3
Inter-Method Performance Study of Tumor Volumetry Assessment on Computed Tomography Test-Retest Data.
Acad Radiol. 2015 Nov;22(11):1393-408. doi: 10.1016/j.acra.2015.08.007. Epub 2015 Sep 14.
4
A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results from a Multi-institutional Study.
J Digit Imaging. 2016 Aug;29(4):476-87. doi: 10.1007/s10278-016-9859-z.
5
Benefit of overlapping reconstruction for improving the quantitative assessment of CT lung nodule volume.
Acad Radiol. 2013 Feb;20(2):173-80. doi: 10.1016/j.acra.2012.08.014. Epub 2012 Oct 22.
6

引用本文的文献

1
Assessing the impact of nodule features and software algorithm on pulmonary nodule measurement uncertainty for nodules sized 20 mm or less.
Quant Imaging Med Surg. 2024 Jul 1;14(7):5057-5071. doi: 10.21037/qims-23-1501. Epub 2024 Jun 27.
2
Comparison of One-Dimensional and Volumetric Computed Tomography Measurements of Injected-Water Phantoms.
J Res Natl Inst Stand Technol. 2017 Sep 20;122:1-9. doi: 10.6028/jres.122.036. eCollection 2017.
3
Challenges in ensuring the generalizability of image quantitation methods for MRI.
Med Phys. 2022 Apr;49(4):2820-2835. doi: 10.1002/mp.15195. Epub 2021 Sep 29.
4
Contemporary issues in the implementation of lung cancer screening.
Eur Respir Rev. 2021 Jul 20;30(161). doi: 10.1183/16000617.0288-2020. Print 2021 Sep 30.
5
Screen-detected solid nodules: from detection of nodule to structured reporting.
Transl Lung Cancer Res. 2021 May;10(5):2335-2346. doi: 10.21037/tlcr-20-296.
6
Understanding Sources of Variation to Improve the Reproducibility of Radiomics.
Front Oncol. 2021 Mar 29;11:633176. doi: 10.3389/fonc.2021.633176. eCollection 2021.
7
8
Semi-automated pulmonary nodule interval segmentation using the NLST data.
Med Phys. 2018 Mar;45(3):1093-1107. doi: 10.1002/mp.12766. Epub 2018 Feb 19.
10
Quantitative assessment of nonsolid pulmonary nodule volume with computed tomography in a phantom study.
Quant Imaging Med Surg. 2017 Dec;7(6):623-635. doi: 10.21037/qims.2017.12.07.

本文引用的文献

1
Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons.
Stat Methods Med Res. 2015 Feb;24(1):68-106. doi: 10.1177/0962280214537390. Epub 2014 Jun 11.
2
Statistical issues in the comparison of quantitative imaging biomarker algorithms using pulmonary nodule volume as an example.
Stat Methods Med Res. 2015 Feb;24(1):107-40. doi: 10.1177/0962280214537392. Epub 2014 Jun 11.
3
Uncertainties in RECIST as a measure of volume for lung nodules and liver tumors.
Med Phys. 2012 May;39(5):2628-37. doi: 10.1118/1.3701791.
5
Volumetric CT in lung cancer: an example for the qualification of imaging as a biomarker.
Acad Radiol. 2010 Jan;17(1):107-15. doi: 10.1016/j.acra.2009.06.019.
7
Noncalcified lung nodules: volumetric assessment with thoracic CT.
Radiology. 2009 Apr;251(1):26-37. doi: 10.1148/radiol.2511071897.
8
New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).
Eur J Cancer. 2009 Jan;45(2):228-47. doi: 10.1016/j.ejca.2008.10.026.
9
Radiologic measurements of tumor response to treatment: practical approaches and limitations.
Radiographics. 2008 Mar-Apr;28(2):329-44. doi: 10.1148/rg.282075068.
10
Inherent variability of CT lung nodule measurements in vivo using semiautomated volumetric measurements.
AJR Am J Roentgenol. 2006 Apr;186(4):989-94. doi: 10.2214/AJR.04.1821.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验