Müller-Caspary Knut, Krause Florian F, Grieb Tim, Löffler Stefan, Schowalter Marco, Béché Armand, Galioit Vincent, Marquardt Dennis, Zweck Josef, Schattschneider Peter, Verbeeck Johan, Rosenauer Andreas
Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany.
Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany.
Ultramicroscopy. 2017 Jul;178:62-80. doi: 10.1016/j.ultramic.2016.05.004. Epub 2016 May 12.
This study sheds light on the prerequisites, possibilities, limitations and interpretation of high-resolution differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). We draw particular attention to the well-established DPC technique based on segmented annular detectors and its relation to recent developments based on pixelated detectors. These employ the expectation value of the momentum transfer as a reliable measure of the angular deflection of the STEM beam induced by an electric field in the specimen. The influence of scattering and propagation of electrons within the specimen is initially discussed separately and then treated in terms of a two-state channeling theory. A detailed simulation study of GaN is presented as a function of specimen thickness and bonding. It is found that bonding effects are rather detectable implicitly, e.g., by characteristics of the momentum flux in areas between the atoms than by directly mapping electric fields and charge densities. For strontium titanate, experimental charge densities are compared with simulations and discussed with respect to experimental artifacts such as scan noise. Finally, we consider practical issues such as figures of merit for spatial and momentum resolution, minimum electron dose, and the mapping of larger-scale, built-in electric fields by virtue of data averaged over a crystal unit cell. We find that the latter is possible for crystals with an inversion center. Concerning the optimal detector design, this study indicates that a sampling of 5mrad per pixel is sufficient in typical applications, corresponding to approximately 10×10 available pixels.
本研究揭示了扫描透射电子显微镜(STEM)中高分辨率差分相衬(DPC)成像的前提条件、可能性、局限性及解释。我们特别关注基于分段环形探测器的成熟DPC技术及其与基于像素探测器的最新进展的关系。这些技术采用动量转移的期望值作为由样品中的电场引起的STEM束角偏转的可靠度量。首先分别讨论样品内电子散射和传播的影响,然后根据双态沟道理论进行处理。给出了作为样品厚度和键合函数的氮化镓详细模拟研究。结果发现,键合效应相当难以直接检测到,例如,通过原子间区域的动量通量特性来检测,而不是通过直接绘制电场和电荷密度来检测。对于钛酸锶,将实验电荷密度与模拟结果进行比较,并针对诸如扫描噪声等实验伪像进行讨论。最后,我们考虑了实际问题,如空间和动量分辨率的品质因数、最小电子剂量,以及通过晶体单位晶胞上平均的数据来绘制更大尺度的内置电场。我们发现对于具有反演中心的晶体可以实现后者。关于最佳探测器设计,本研究表明在典型应用中每像素5毫弧度的采样就足够了,对应于大约10×10个可用像素。