Arnold Suzanne V, Spertus John A, Jones Philip G, McGuire Darren K, Lipska Kasia J, Xu Yaping, Stolker Joshua M, Goyal Abhinav, Kosiborod Mikhail
From the Saint Luke's Mid America Heart Institute, Kansas City, MO (S.V.A., J.A.S., P.G.J., M.K.); University of Missouri-Kansas City (S.V.A., J.A.S., M.K.); University of Texas Southwestern Medical Center, Dallas (D.K.M.); Yale University School of Medicine, New Haven, CT (K.J.L.); Genentech, South San Francisco, CA (Y.X.); Saint Louis University, St. Louis, MO (J.M.S.); and Emory School of Medicine, Atlanta, GA (A.G.).
Circ Cardiovasc Qual Outcomes. 2016 Jul;9(4):372-9. doi: 10.1161/CIRCOUTCOMES.115.002365. Epub 2016 May 24.
Although patients with diabetes mellitus experience high rates of adverse events after acute myocardial infarction (AMI), including death and recurrent ischemia, some diabetic patients are likely at low risk, whereas others are at high risk. We sought to develop prediction models to stratify risk after AMI in patients with diabetes mellitus.
We developed prediction models for long-term mortality and angina among 1613 patients with diabetes mellitus discharged alive after AMI from 24 US hospitals and then validated the models in a separate, multicenter registry of 786 patients with diabetes mellitus. Event rates in the derivation cohort were 27% for 5-year mortality and 27% for 1-year angina. Parsimonious prediction models demonstrated good discrimination (c-indices=0.78 and 0.69, respectively) and excellent calibration. Within the context of the predictors we estimated, the strongest predictors for mortality were higher creatinine, not working at the time of the AMI, older age, lower hemoglobin, left ventricular dysfunction, and chronic heart failure. The strongest predictors for angina were angina burden in the 4 weeks before the AMI, younger age, history of prior coronary bypass graft surgery, and non-white race. The lowest and highest deciles of predicted risk ranged from 4% to 80% for mortality and 12% to 59% for angina. The models also performed well in external validation (c-indices=0.78 and 0.73, respectively).
We found a wide range of risk for adverse outcomes after AMI in diabetic patients. Predictive models can identify patients with diabetes mellitus for whom closer follow-up and aggressive secondary prevention strategies should be considered.
尽管糖尿病患者在急性心肌梗死(AMI)后发生不良事件的几率较高,包括死亡和反复缺血,但一些糖尿病患者可能风险较低,而另一些则风险较高。我们试图开发预测模型,对糖尿病患者AMI后的风险进行分层。
我们为1613例从美国24家医院AMI后存活出院的糖尿病患者开发了长期死亡率和心绞痛的预测模型,然后在一个单独的、包含786例糖尿病患者的多中心登记处对模型进行验证。推导队列中的事件发生率为5年死亡率27%,1年心绞痛发生率27%。简约预测模型显示出良好的区分度(c指数分别为0.78和0.69)和出色的校准度。在我们评估的预测因素中,死亡率的最强预测因素是肌酐水平较高、AMI时未工作、年龄较大、血红蛋白水平较低、左心室功能障碍和慢性心力衰竭。心绞痛的最强预测因素是AMI前4周内心绞痛负担、年龄较小、既往冠状动脉搭桥手术史和非白人种族。预测风险的最低和最高十分位数范围为死亡率4%至80%,心绞痛12%至59%。这些模型在外部验证中也表现良好(c指数分别为0.78和0.73)。
我们发现糖尿病患者AMI后不良结局的风险范围很广。预测模型可以识别出应考虑进行更密切随访和积极二级预防策略的糖尿病患者。