Jia Peng, Chen Hao, Kang Hui, Qi Jin, Zhao Peng, Jiang Min, Guo Lei, Zhou Qi, Qian Nian Dong, Zhou Han Bing, Xu You Jia, Fan Yongqian, Deng Lian Fu
Department of Orthopaedics, San Xiang Road 1055, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China.
Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Rui Jin Er Road 197, Shanghai, 200020, China.
J Biomed Mater Res A. 2016 Oct;104(10):2515-27. doi: 10.1002/jbm.a.35793. Epub 2016 Jun 6.
The regeneration capacity of osteoporotic bones is generally lower than that of normal bones. Current methods of osteoporotic bone defect treatment are not always satisfactory. Recent studies demonstrate that activation of the hypoxia inducible factor-1α (HIF-1α) pathway, by genetic methods or hypoxia-mimicking agents, could accelerate bone regeneration. However, little is known as to whether modulating the HIF-1α pathway promotes osteoporotic defect healing. To address this problem in the present study, we first demonstrated that HIF-1α and vascular endothelial growth factor expression levels are lower in osteoporotic bones than in normal bones. Second, we loaded poly(Lactic-co-glycolic acid) (PLGA) with the hypoxia-mimetic agent deferoxamine (DFO). DFO released from PLGA had no significant effect on the proliferation of mesenchymal stem cells (MSCs); however, DFO did enhance the osteogenic differentiation of MSCs. In addition, DFO upregulated the mRNA expression levels of angiogenic factors in MSCs. Endothelial tubule formation assays demonstrate that DFO promoted angiogenesis in human umbilical vein endothelial cells. Third, untreated PLGA scaffolds (PLGA group) or DFO-containing PLGA (PLGA + DFO group) were implanted into critically sized osteoporotic femur defects in ovariectomized rats. After treatment periods of 14 or 28 days, micro-CT, histological, CD31 immunohistochemical, and dynamic bone histomorphometric analyses showed that DFO dramatically stimulated bone formation and angiogenesis in a critically sized osteoporotic femur defect model. Our in vitro and in vivo results demonstrate that DFO may promote the healing of osteoporotic bone defects due to enhanced angiogenesis and osteogenesis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2515-2527, 2016.
骨质疏松性骨的再生能力通常低于正常骨骼。目前治疗骨质疏松性骨缺损的方法并不总是令人满意。最近的研究表明,通过基因方法或模拟缺氧的药物激活缺氧诱导因子-1α(HIF-1α)途径,可以加速骨再生。然而,关于调节HIF-1α途径是否能促进骨质疏松性缺损愈合,人们知之甚少。为了解决本研究中的这一问题,我们首先证明,骨质疏松性骨中HIF-1α和血管内皮生长因子的表达水平低于正常骨骼。其次,我们将聚乳酸-乙醇酸共聚物(PLGA)与模拟缺氧的药物去铁胺(DFO)结合。从PLGA释放的DFO对间充质干细胞(MSC)的增殖没有显著影响;然而,DFO确实增强了MSC的成骨分化。此外,DFO上调了MSC中血管生成因子的mRNA表达水平。内皮小管形成试验表明,DFO促进了人脐静脉内皮细胞的血管生成。第三,将未处理的PLGA支架(PLGA组)或含DFO的PLGA(PLGA + DFO组)植入去卵巢大鼠的临界尺寸骨质疏松性股骨缺损处。在治疗14天或28天后,显微CT、组织学、CD31免疫组织化学和动态骨组织形态计量学分析表明,在临界尺寸骨质疏松性股骨缺损模型中,DFO显著刺激了骨形成和血管生成。我们的体外和体内结果表明,DFO可能由于增强血管生成和成骨作用而促进骨质疏松性骨缺损的愈合。© 2016威利期刊公司。《生物医学材料研究杂志》A部分:104A:2515 - 2527,2016年。