Suppr超能文献

昆虫的表面积与体积比

Surface area-volume ratios in insects.

作者信息

Kühsel Sara, Brückner Adrian, Schmelzle Sebastian, Heethoff Michael, Blüthgen Nico

机构信息

Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, D-64287, Darmstadt, Germany.

出版信息

Insect Sci. 2017 Oct;24(5):829-841. doi: 10.1111/1744-7917.12362. Epub 2016 Aug 15.

Abstract

Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity.

摘要

体重、体积和表面积对物种生理机能和表现的诸多方面都很重要。尽管体重缩放关系在文献中受到了广泛关注,但在这种情况下,动物的表面积尚未得到明确测量。我们首次基于结构光扫描方法,利用三维表面模型对来自4个目(双翅目、膜翅目、鳞翅目和鞘翅目)的126种传粉昆虫的表面积与体积(SA/V)比进行了量化。在非常干燥的条件下,于15℃和30℃对67种昆虫进行了2小时的重量法失水测量,以证明新的三维表面测量方法的适用性以及对预测昆虫表现的相关性。量化的SA/V比显著解释了物种间失水的差异,无论是直接解释还是在考虑等比缩放(SA/V与质量关系的残差)之后。表面积相对较大的小昆虫具有最高的失水率。因此,对昆虫进行表面扫描以量化异速生长的SA/V比,为预测生理反应提供了一种有前景的方法,提高了仅假设几何相似性的体重等比关系的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验