Suppr超能文献

基于有无学习过程的组合方法特征提取的胃肠内窥镜病灶图像识别。

Identification of lesion images from gastrointestinal endoscope based on feature extraction of combinational methods with and without learning process.

机构信息

Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Biomedical Engineering, University of Electronic Science and Technology of China, Chengdu, China.

Digestive Endoscopic Center of West China Hospital, Sichuan University, Chengdu, China.

出版信息

Med Image Anal. 2016 Aug;32:281-94. doi: 10.1016/j.media.2016.04.007. Epub 2016 May 14.

Abstract

The gastrointestinal endoscopy in this study refers to conventional gastroscopy and wireless capsule endoscopy (WCE). Both of these techniques produce a large number of images in each diagnosis. The lesion detection done by hand from the images above is time consuming and inaccurate. This study designed a new computer-aided method to detect lesion images. We initially designed an algorithm named joint diagonalisation principal component analysis (JDPCA), in which there are no approximation, iteration or inverting procedures. Thus, JDPCA has a low computational complexity and is suitable for dimension reduction of the gastrointestinal endoscopic images. Then, a novel image feature extraction method was established through combining the algorithm of machine learning based on JDPCA and conventional feature extraction algorithm without learning. Finally, a new computer-aided method is proposed to identify the gastrointestinal endoscopic images containing lesions. The clinical data of gastroscopic images and WCE images containing the lesions of early upper digestive tract cancer and small intestinal bleeding, which consist of 1330 images from 291 patients totally, were used to confirm the validation of the proposed method. The experimental results shows that, for the detection of early oesophageal cancer images, early gastric cancer images and small intestinal bleeding images, the mean values of accuracy of the proposed method were 90.75%, 90.75% and 94.34%, with the standard deviations (SDs) of 0.0426, 0.0334 and 0.0235, respectively. The areas under the curves (AUCs) were 0.9471, 0.9532 and 0.9776, with the SDs of 0.0296, 0.0285 and 0.0172, respectively. Compared with the traditional related methods, our method showed a better performance. It may therefore provide worthwhile guidance for improving the efficiency and accuracy of gastrointestinal disease diagnosis and is a good prospect for clinical application.

摘要

本研究中的胃肠内镜检查是指常规胃镜检查和无线胶囊内镜(WCE)。这两种技术在每次诊断中都会产生大量图像。从上述图像中手动进行病变检测既耗时又不准确。本研究设计了一种新的计算机辅助方法来检测病变图像。我们最初设计了一种名为联合对角化主成分分析(JDPCA)的算法,其中没有近似、迭代或求逆过程。因此,JDPCA 的计算复杂度低,适用于胃肠内镜图像的降维。然后,通过结合基于 JDPCA 的机器学习算法和传统的无学习特征提取算法,建立了一种新颖的图像特征提取方法。最后,提出了一种新的计算机辅助方法来识别包含病变的胃肠内镜图像。使用包含早期上消化道癌和小肠出血病变的胃内窥镜图像和 WCE 图像的临床数据(共来自 291 名患者的 1330 张图像)来验证所提出方法的有效性。实验结果表明,对于早期食管癌图像、早期胃癌图像和小肠出血图像的检测,所提出方法的准确度平均值分别为 90.75%、90.75%和 94.34%,标准差分别为 0.0426、0.0334 和 0.0235。曲线下面积(AUC)分别为 0.9471、0.9532 和 0.9776,标准差分别为 0.0296、0.0285 和 0.0172。与传统的相关方法相比,我们的方法表现出更好的性能。因此,它可能为提高胃肠道疾病诊断的效率和准确性提供有价值的指导,具有良好的临床应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验