Suppr超能文献

宏伟联盟:共生体代谢整合与专性节肢动物吸血习性

Grandeur Alliances: Symbiont Metabolic Integration and Obligate Arthropod Hematophagy.

作者信息

Rio Rita V M, Attardo Geoffrey M, Weiss Brian L

机构信息

Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV 26506, USA.

Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT 06520, USA.

出版信息

Trends Parasitol. 2016 Sep;32(9):739-749. doi: 10.1016/j.pt.2016.05.002. Epub 2016 May 25.

Abstract

Several arthropod taxa live exclusively on vertebrate blood. This food source lacks essential metabolites required for the maintenance of metabolic homeostasis, and as such, these arthropods have formed symbioses with nutrient-supplementing microbes that facilitate their host's 'hematophagous' feeding ecology. Herein we highlight metabolic contributions of bacterial symbionts that reside within tsetse flies, bed bugs, lice, reduviid bugs, and ticks, with specific emphasis on B vitamin and cofactor biosynthesis. Importantly, these arthropods can transmit pathogens of medical and veterinary relevance and/or cause infestations that induce psychological and dermatological distress. Microbial metabolites, and the biochemical pathways that generate them, can serve as specific targets of novel control mechanisms aimed at disrupting the metabolism of hematophagous arthropods, thus combatting pest invasion and vector-borne pathogen transmission.

摘要

几种节肢动物类群仅以脊椎动物的血液为食。这种食物来源缺乏维持代谢稳态所需的必需代谢物,因此,这些节肢动物与补充营养的微生物形成了共生关系,这些微生物促进了它们宿主的“吸血”摄食生态。在此,我们重点介绍了采采蝇、臭虫、虱子、猎蝽和蜱体内细菌共生体的代谢贡献,特别强调了B族维生素和辅因子的生物合成。重要的是,这些节肢动物可以传播具有医学和兽医学意义的病原体,和/或引起侵扰,导致心理和皮肤不适。微生物代谢物及其产生的生化途径,可以作为新型控制机制的特定靶点,旨在破坏吸血节肢动物的代谢,从而对抗害虫入侵和病媒传播病原体的传播。

相似文献

1
Grandeur Alliances: Symbiont Metabolic Integration and Obligate Arthropod Hematophagy.
Trends Parasitol. 2016 Sep;32(9):739-749. doi: 10.1016/j.pt.2016.05.002. Epub 2016 May 25.
2
Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes.
Acta Trop. 2018 Oct;186:69-101. doi: 10.1016/j.actatropica.2018.07.005. Epub 2018 Jul 9.
3
Metabolic interactions between disease-transmitting vectors and their microbiota.
Trends Parasitol. 2022 Aug;38(8):697-708. doi: 10.1016/j.pt.2022.05.002. Epub 2022 May 26.
7
Arthropod-borne pathogens of dogs and cats: From pathways and times of transmission to disease control.
Vet Parasitol. 2018 Feb 15;251:68-77. doi: 10.1016/j.vetpar.2017.12.021. Epub 2017 Dec 27.
9
Bacterial symbiosis in arthropods and the control of disease transmission.
Emerg Infect Dis. 1998 Oct-Dec;4(4):581-91. doi: 10.3201/eid0404.980408.
10
Exosome-Mediated Pathogen Transmission by Arthropod Vectors.
Trends Parasitol. 2018 Jul;34(7):549-552. doi: 10.1016/j.pt.2018.04.001. Epub 2018 Apr 24.

引用本文的文献

1
Allergic reactions associated with tsetse fly bites.
Ann Med. 2025 Dec;57(1):2514096. doi: 10.1080/07853890.2025.2514096. Epub 2025 Jun 8.
2
Ticks without borders: microbiome of immature neotropical tick species parasitizing migratory songbirds along northern Gulf of Mexico.
Front Cell Infect Microbiol. 2024 Nov 18;14:1472598. doi: 10.3389/fcimb.2024.1472598. eCollection 2024.
3
Microbiota profile in organs of the horseflies (Diptera: Tabanidae) in Northeastern China.
Front Microbiol. 2024 Sep 24;15:1467875. doi: 10.3389/fmicb.2024.1467875. eCollection 2024.
5
Insect-microbe interactions and their influence on organisms and ecosystems.
Ecol Evol. 2024 Jul 21;14(7):e11699. doi: 10.1002/ece3.11699. eCollection 2024 Jul.
6
Endosymbiont-derived metabolites are essential for tick host reproductive fitness.
mSphere. 2024 Jul 30;9(7):e0069323. doi: 10.1128/msphere.00693-23. Epub 2024 Jul 2.
7
Development, feeding, and sex shape the relative quantity of the nutritional obligatory symbiont in bed bugs.
Front Microbiol. 2024 May 7;15:1386458. doi: 10.3389/fmicb.2024.1386458. eCollection 2024.
9
Genome analysis of " Aschnera chinzeii," the bacterial endosymbiont of the blood-sucking bat fly (Insecta: Diptera: Nycteribiidae).
Front Microbiol. 2024 Jan 22;14:1336919. doi: 10.3389/fmicb.2023.1336919. eCollection 2023.
10
Host-Encoded Aminotransferase Import into the Endosymbiotic Bacteria of Red Palm Weevil.
Insects. 2024 Jan 5;15(1):35. doi: 10.3390/insects15010035.

本文引用的文献

1
Two Bacterial Genera, Sodalis and Rickettsia, Associated with the Seal Louse Proechinophthirus fluctus (Phthiraptera: Anoplura).
Appl Environ Microbiol. 2016 May 16;82(11):3185-97. doi: 10.1128/AEM.00282-16. Print 2016 Jun 1.
3
One health - an ecological and evolutionary framework for tackling Neglected Zoonotic Diseases.
Evol Appl. 2016 Jan 8;9(2):313-33. doi: 10.1111/eva.12341. eCollection 2016 Feb.
4
Preventing the transmission of American trypanosomiasis and its spread into non-endemic countries.
Infect Dis Poverty. 2015 Dec 28;4:60. doi: 10.1186/s40249-015-0092-7.
5
The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis.
PLoS One. 2015 Dec 9;10(12):e0144552. doi: 10.1371/journal.pone.0144552. eCollection 2015.
6
Riboflavin Provisioning Underlies Wolbachia's Fitness Contribution to Its Insect Host.
mBio. 2015 Nov 10;6(6):e01732-15. doi: 10.1128/mBio.01732-15.
7
Climate Change and Risk Projection: Dynamic Spatial Models of Tsetse and African Trypanosomiasis in Kenya.
Ann Assoc Am Geogr. 2012;102(2):1038-1048. doi: 10.1080/00045608.2012.671134.
8
"Wigglesworthia morsitans" Folate (Vitamin B9) Biosynthesis Contributes to Tsetse Host Fitness.
Appl Environ Microbiol. 2015 Aug 15;81(16):5375-86. doi: 10.1128/AEM.00553-15. Epub 2015 May 29.
10
Paternal Transmission of a Secondary Symbiont during Mating in the Viviparous Tsetse Fly.
Mol Biol Evol. 2015 Aug;32(8):1977-80. doi: 10.1093/molbev/msv077. Epub 2015 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验