Suppr超能文献

向何方,有多远?人类路径整合中平移和旋转信息的追踪

Which way and how far? Tracking of translation and rotation information for human path integration.

作者信息

Chrastil Elizabeth R, Sherrill Katherine R, Hasselmo Michael E, Stern Chantal E

机构信息

Department of Psychological and Brain Sciences and Center for Memory and Brain, Boston University, Boston, Massachusetts.

Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging.

出版信息

Hum Brain Mapp. 2016 Oct;37(10):3636-55. doi: 10.1002/hbm.23265. Epub 2016 May 30.

Abstract

Path integration, the constant updating of the navigator's knowledge of position and orientation during movement, requires both visuospatial knowledge and memory. This study aimed to develop a systems-level understanding of human path integration by examining the basic building blocks of path integration in humans. To achieve this goal, we used functional imaging to examine the neural mechanisms that support the tracking and memory of translational and rotational components of human path integration. Critically, and in contrast to previous studies, we examined movement in translation and rotation tasks with no defined end-point or goal. Navigators accumulated translational and rotational information during virtual self-motion. Activity in hippocampus, retrosplenial cortex (RSC), and parahippocampal cortex (PHC) increased during both translation and rotation encoding, suggesting that these regions track self-motion information during path integration. These results address current questions regarding distance coding in the human brain. By implementing a modified delayed match to sample paradigm, we also examined the encoding and maintenance of path integration signals in working memory. Hippocampus, PHC, and RSC were recruited during successful encoding and maintenance of path integration information, with RSC selective for tasks that required processing heading rotation changes. These data indicate distinct working memory mechanisms for translation and rotation, which are essential for updating neural representations of current location. The results provide evidence that hippocampus, PHC, and RSC flexibly track task-relevant translation and rotation signals for path integration and could form the hub of a more distributed network supporting spatial navigation. Hum Brain Mapp 37:3636-3655, 2016. © 2016 Wiley Periodicals, Inc.

摘要

路径整合是指在运动过程中不断更新导航者对位置和方向的认知,这需要视觉空间知识和记忆。本研究旨在通过研究人类路径整合的基本组成部分,从系统层面理解人类的路径整合。为实现这一目标,我们使用功能成像来研究支持人类路径整合的平移和旋转分量的跟踪与记忆的神经机制。至关重要的是,与以往研究不同,我们在没有明确终点或目标的平移和旋转任务中研究运动。导航者在虚拟自我运动过程中积累平移和旋转信息。在平移和旋转编码过程中,海马体、压后皮质(RSC)和海马旁皮质(PHC)的活动均增加,这表明这些区域在路径整合过程中跟踪自我运动信息。这些结果解决了当前关于人类大脑中距离编码的问题。通过实施一种改良的延迟匹配样本范式,我们还研究了工作记忆中路径整合信号的编码和维持。在成功编码和维持路径整合信息的过程中,海马体、PHC和RSC均被激活,其中RSC对需要处理航向旋转变化的任务具有选择性。这些数据表明平移和旋转具有不同的工作记忆机制,这对于更新当前位置的神经表征至关重要。结果提供了证据,表明海马体、PHC和RSC灵活地跟踪与任务相关的平移和旋转信号以进行路径整合,并可能构成支持空间导航的更广泛分布式网络的枢纽。《人类大脑图谱》37:3636 - 3655,2016年。© 2016威利期刊公司。

相似文献

1
Which way and how far? Tracking of translation and rotation information for human path integration.
Hum Brain Mapp. 2016 Oct;37(10):3636-55. doi: 10.1002/hbm.23265. Epub 2016 May 30.
3
Hippocampus and retrosplenial cortex combine path integration signals for successful navigation.
J Neurosci. 2013 Dec 4;33(49):19304-13. doi: 10.1523/JNEUROSCI.1825-13.2013.
4
There and Back Again: Hippocampus and Retrosplenial Cortex Track Homing Distance during Human Path Integration.
J Neurosci. 2015 Nov 18;35(46):15442-52. doi: 10.1523/JNEUROSCI.1209-15.2015.
5
EEG correlates of spatial orientation in the human retrosplenial complex.
Neuroimage. 2015 Oct 15;120:123-32. doi: 10.1016/j.neuroimage.2015.07.009. Epub 2015 Jul 9.
6
The retrosplenial cortex is necessary for path integration in the dark.
Behav Brain Res. 2014 Oct 1;272:303-7. doi: 10.1016/j.bbr.2014.07.009. Epub 2014 Jul 12.
7
Rotational error in path integration: encoding and execution errors in angle reproduction.
Exp Brain Res. 2017 Jun;235(6):1885-1897. doi: 10.1007/s00221-017-4910-y. Epub 2017 Mar 16.
9
Transforming representations of movement from body- to world-centric space.
Nature. 2022 Jan;601(7891):98-104. doi: 10.1038/s41586-021-04191-x. Epub 2021 Dec 15.
10
Functional correlates of likelihood and prior representations in a virtual distance task.
Hum Brain Mapp. 2016 Sep;37(9):3172-87. doi: 10.1002/hbm.23232. Epub 2016 May 11.

引用本文的文献

1
Disentangling reference frames in the neural compass.
Imaging Neurosci (Camb). 2024 May 1;2. doi: 10.1162/imag_a_00149. eCollection 2024.
4
Overestimation in angular path integration precedes Alzheimer's dementia.
Curr Biol. 2023 Nov 6;33(21):4650-4661.e7. doi: 10.1016/j.cub.2023.09.047. Epub 2023 Oct 11.
5
Wayfinding and path integration deficits detected using a virtual reality mobile app in patients with traumatic brain injury.
PLoS One. 2023 Mar 9;18(3):e0282255. doi: 10.1371/journal.pone.0282255. eCollection 2023.
7
Rethinking retrosplenial cortex: Perspectives and predictions.
Neuron. 2023 Jan 18;111(2):150-175. doi: 10.1016/j.neuron.2022.11.006. Epub 2022 Dec 1.
8
Linking global top-down views to first-person views in the brain.
Proc Natl Acad Sci U S A. 2022 Nov 8;119(45):e2202024119. doi: 10.1073/pnas.2202024119. Epub 2022 Nov 2.
9
Sensory Evidence Accumulation Using Optic Flow in a Naturalistic Navigation Task.
J Neurosci. 2022 Jul 6;42(27):5451-5462. doi: 10.1523/JNEUROSCI.2203-21.2022. Epub 2022 May 31.
10
Influence of sensory modality and control dynamics on human path integration.
Elife. 2022 Feb 18;11:e63405. doi: 10.7554/eLife.63405.

本文引用的文献

2
Why neurons mix: high dimensionality for higher cognition.
Curr Opin Neurobiol. 2016 Apr;37:66-74. doi: 10.1016/j.conb.2016.01.010. Epub 2016 Feb 4.
3
There and Back Again: Hippocampus and Retrosplenial Cortex Track Homing Distance during Human Path Integration.
J Neurosci. 2015 Nov 18;35(46):15442-52. doi: 10.1523/JNEUROSCI.1209-15.2015.
4
The Cognitive Architecture of Spatial Navigation: Hippocampal and Striatal Contributions.
Neuron. 2015 Oct 7;88(1):64-77. doi: 10.1016/j.neuron.2015.09.021.
5
Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex.
Curr Biol. 2015 Oct 5;25(19):2493-502. doi: 10.1016/j.cub.2015.08.034. Epub 2015 Sep 17.
6
Transformation from a retinal to a cyclopean representation in human visual cortex.
Curr Biol. 2015 Aug 3;25(15):1982-7. doi: 10.1016/j.cub.2015.06.003. Epub 2015 Jul 2.
7
Hippocampal subfield and medial temporal cortical persistent activity during working memory reflects ongoing encoding.
Front Syst Neurosci. 2015 Mar 9;9:30. doi: 10.3389/fnsys.2015.00030. eCollection 2015.
8
A category-free neural population supports evolving demands during decision-making.
Nat Neurosci. 2014 Dec;17(12):1784-1792. doi: 10.1038/nn.3865. Epub 2014 Nov 10.
9
A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective.
Front Hum Neurosci. 2014 Oct 10;8:803. doi: 10.3389/fnhum.2014.00803. eCollection 2014.
10
The role of the hippocampus in flexible cognition and social behavior.
Front Hum Neurosci. 2014 Sep 30;8:742. doi: 10.3389/fnhum.2014.00742. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验