Suppr超能文献

利用结构和扩散磁共振成像研究自闭症谱系障碍:一项综述。

Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey.

作者信息

Ismail Marwa M T, Keynton Robert S, Mostapha Mahmoud M M O, ElTanboly Ahmed H, Casanova Manuel F, Gimel'farb Georgy L, El-Baz Ayman

机构信息

BioImaging Laboratory, Department of Bioengineering, University of Louisville Louisville, KY, USA.

Departments of Pediatrics and Biomedical Sciences, University of South Carolina Columbia, SC, USA.

出版信息

Front Hum Neurosci. 2016 May 11;10:211. doi: 10.3389/fnhum.2016.00211. eCollection 2016.

Abstract

Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics.

摘要

自20世纪80年代诞生以来,磁共振成像(MRI)技术已成为促进各种疾病和异常情况非侵入性临床诊断的有力手段。多种MRI技术,如不同类型的结构MRI(sMRI)和扩散张量成像(DTI),已被用于研究自闭症谱系障碍(ASD)的各个方面,以便更好地理解这种复杂的综合征。本文综述了结构磁共振成像(sMRI)和扩散张量成像(DTI)在研究自闭症谱系障碍(ASD)方面的最新应用。由于年龄范围、硬件协议、人群类型、参与者数量和图像分析参数的不同,主要报告的研究结果有时相互矛盾。从婴儿期到成年期的连续生命阶段中,与ASD临床病理相关性相关的主要解剖结构,如杏仁核、大脑和小脑,得到了重点强调。这项调查表明,自闭症儿童大脑中不存在一致的病理特征,且文献中缺乏对2岁以下患者的研究。已知的出版物还强调了数据采集和分析方面的进展,以及结合静息态、任务诱发和sMRI测量的多模态方法的重要性。通过sMRI和DTI获得的初步结果显示出在早期和非侵入性ASD诊断方面具有良好的前景。

相似文献

1
Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey.
Front Hum Neurosci. 2016 May 11;10:211. doi: 10.3389/fnhum.2016.00211. eCollection 2016.
3
Unified framework for early stage status prediction of autism based on infant structural magnetic resonance imaging.
Autism Res. 2021 Dec;14(12):2512-2523. doi: 10.1002/aur.2626. Epub 2021 Oct 13.
6
Role of Artificial Intelligence for Autism Diagnosis Using DTI and fMRI: A Survey.
Biomedicines. 2023 Jun 29;11(7):1858. doi: 10.3390/biomedicines11071858.
7
Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies.
Neurosci Bull. 2017 Apr;33(2):219-237. doi: 10.1007/s12264-017-0118-1. Epub 2017 Mar 10.
9
Using tissue microstructure and multimodal MRI to parse the phenotypic heterogeneity and cellular basis of autism spectrum disorder.
J Child Psychol Psychiatry. 2022 Aug;63(8):855-870. doi: 10.1111/jcpp.13531. Epub 2021 Nov 11.
10
Characteristics of Brains in Autism Spectrum Disorder: Structure, Function and Connectivity across the Lifespan.
Exp Neurobiol. 2015 Dec;24(4):273-84. doi: 10.5607/en.2015.24.4.273. Epub 2015 Dec 16.

引用本文的文献

2
Deficiency of autism susceptibility gene Trio in cerebellar Purkinje cells leads to delayed motor impairments.
Front Psychiatry. 2025 Apr 10;15:1396716. doi: 10.3389/fpsyt.2024.1396716. eCollection 2024.
4
Automated motion artifact detection in early pediatric diffusion MRI using a convolutional neural network.
Imaging Neurosci (Camb). 2023;1. doi: 10.1162/imag_a_00023. Epub 2023 Oct 17.
5
ANKS1B encoded AIDA-1 regulates social behaviors by controlling oligodendrocyte function.
Nat Commun. 2023 Dec 21;14(1):8499. doi: 10.1038/s41467-023-43438-1.
6
Autism spectrum disorder-specific changes in white matter connectome edge density based on functionally defined nodes.
Front Neurosci. 2023 Nov 23;17:1285396. doi: 10.3389/fnins.2023.1285396. eCollection 2023.
8
A neuro-computational social learning framework to facilitate transdiagnostic classification and treatment across psychiatric disorders.
Neurosci Biobehav Rev. 2023 Jun;149:105181. doi: 10.1016/j.neubiorev.2023.105181. Epub 2023 Apr 14.
10
SHANK3 deficiency leads to myelin defects in the central and peripheral nervous system.
Cell Mol Life Sci. 2022 Jun 20;79(7):371. doi: 10.1007/s00018-022-04400-4.

本文引用的文献

2
Connectivity in Autism: A Review of MRI Connectivity Studies.
Harv Rev Psychiatry. 2015 Jul-Aug;23(4):223-44. doi: 10.1097/HRP.0000000000000072.
4
The first 1000 days of the autistic brain: a systematic review of diffusion imaging studies.
Front Hum Neurosci. 2015 Mar 26;9:159. doi: 10.3389/fnhum.2015.00159. eCollection 2015.
5
Structural MRI biomarkers of shared pathogenesis in autism spectrum disorder and epilepsy.
Epilepsy Behav. 2015 Jun;47:172-82. doi: 10.1016/j.yebeh.2015.02.017. Epub 2015 Mar 24.
6
MRI or not to MRI! Should brain MRI be a routine investigation in children with autistic spectrum disorders?
Acta Neurol Belg. 2015 Sep;115(3):351-4. doi: 10.1007/s13760-014-0384-x. Epub 2014 Oct 26.
7
Altered cingulum bundle microstructure in autism spectrum disorder.
Acta Neuropsychiatr. 2013 Oct;25(5):275-82. doi: 10.1017/neu.2013.2.
8
Left-hemispheric microstructural abnormalities in children with high-functioning autism spectrum disorder.
Autism Res. 2015 Feb;8(1):61-72. doi: 10.1002/aur.1413. Epub 2014 Sep 25.
9
Increased left hemisphere impairment in high-functioning autism: a tract based spatial statistics study.
Psychiatry Res. 2014 Nov 30;224(2):119-23. doi: 10.1016/j.pscychresns.2014.08.003. Epub 2014 Aug 12.
10
Abnormal cingulum bundle development in autism: a probabilistic tractography study.
Psychiatry Res. 2014 Jan 30;221(1):63-8. doi: 10.1016/j.pscychresns.2013.08.002. Epub 2013 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验