Suppr超能文献

交叉分类纵向数据结构中方差水平误设的后果。

Consequences of Misspecifying Levels of Variance in Cross-Classified Longitudinal Data Structures.

作者信息

Gilbert Jennifer, Petscher Yaacov, Compton Donald L, Schatschneider Chris

机构信息

Department of Special Education, Vanderbilt University Nashville, USA.

Florida Center for Reading Research, Florida State University Tallahassee, USA.

出版信息

Front Psychol. 2016 May 18;7:695. doi: 10.3389/fpsyg.2016.00695. eCollection 2016.

Abstract

The purpose of this study was to determine if modeling school and classroom effects was necessary in estimating passage reading growth across elementary grades. Longitudinal data from 8367 students in 2989 classrooms in 202 Reading First schools were used in this study and were obtained from the Progress Monitoring and Reporting Network maintained by the Florida Center for Reading Research. Oral reading fluency (ORF) was assessed four times per school year. Five growth models with varying levels of data (student, classroom, and school) were estimated in order to determine which structures were necessary to correctly partition variance and accurately estimate standard errors for growth parameters. Because the results illustrate that not modeling higher-level clustering inflated lower-level variance estimates and in some cases led to biased standard errors, the authors recommend the practice of including classroom cross-classification and school nesting when predicting longitudinal student outcomes.

摘要

本研究的目的是确定在估计小学各年级段落阅读增长情况时,对学校和课堂效应进行建模是否必要。本研究使用了来自202所阅读第一学校的2989间教室中8367名学生的纵向数据,这些数据来自佛罗里达阅读研究中心维护的进展监测与报告网络。每学年对口语阅读流利度(ORF)进行四次评估。估计了五个具有不同数据水平(学生、课堂和学校)的增长模型,以确定哪些结构对于正确划分方差和准确估计增长参数的标准误差是必要的。由于结果表明,不对较高层次的聚类进行建模会夸大较低层次的方差估计,并且在某些情况下会导致有偏差的标准误差,因此作者建议在预测纵向学生成果时,采用纳入课堂交叉分类和学校嵌套的做法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9b9/4870234/f31edf72f74d/fpsyg-07-00695-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验