Suppr超能文献

通过形态发生工程进行合成细菌结构的发育设计。

Developmental Design of Synthetic Bacterial Architectures by Morphogenetic Engineering.

作者信息

Pascalie Jonathan, Potier Martin, Kowaliw Taras, Giavitto Jean-Louis, Michel Olivier, Spicher Antoine, Doursat René

机构信息

Complex Systems Institute, Paris Ile-de-France (ISC-PIF), CNRS UPS3611, Paris, France.

Algorithmic, Complexity and Logic Laboratory (LACL), Université Paris-Est Créteil , Créteil, France.

出版信息

ACS Synth Biol. 2016 Aug 19;5(8):842-61. doi: 10.1021/acssynbio.5b00246. Epub 2016 Jun 27.

Abstract

Synthetic biology is an emerging scientific field that promotes the standardized manufacturing of biological components without natural equivalents. Its goal is to create artificial living systems that can meet various needs in health care or energy domains. While most works are focused on the individual bacterium as a chemical reactor, our project, SynBioTIC, addresses a novel and more complex challenge: shape engineering; that is, the redesign of natural morphogenesis toward a new kind of developmental 3D printing. Potential applications include organ growth, natural computing in biocircuits, or future vegetal houses. To create in silico multicellular organisms that exhibit specific shapes, we construe their development as an iterative process combining fundamental collective phenomena such as homeostasis, patterning, segmentation, and limb growth. Our numerical experiments rely on the existing Escherichia coli simulator Gro, a physicochemical computation platform offering reaction-diffusion and collision dynamics solvers. The synthetic bioware of our model executes a set of rules, or genome, in each cell. Cells can differentiate into several predefined types associated with specific actions (divide, emit signal, detect signal, die). Transitions between types are triggered by conditions involving internal and external sensors that detect various protein levels inside and around the cell. Indirect communication between bacteria is relayed by morphogen diffusion and the mechanical constraints of 2D packing. Starting from a single bacterium, the overall architecture emerges in a purely endogenous fashion through a series of developmental stages, inlcuding proliferation, differentiation, morphogen diffusion, and synchronization. The genome can be parametrized to control the growth and features of appendages individually. As exemplified by the L and T shapes that we obtain, certain precursor cells can be inhibited while others can create limbs of varying size (divergence of the homology). Such morphogenetic phenotypes open the way to more complex shapes made of a recursive array of core bodies and limbs and, most importantly, to an evolutionary developmental exploration of unplanned functional forms.

摘要

合成生物学是一个新兴的科学领域,它推动了没有天然对应物的生物组件的标准化制造。其目标是创建能够满足医疗保健或能源领域各种需求的人造生命系统。虽然大多数研究工作都集中在将单个细菌作为化学反应器,但我们的项目SynBioTIC解决了一个新颖且更复杂的挑战:形态工程;也就是说,将自然形态发生重新设计为一种新型的发育3D打印。潜在应用包括器官生长、生物电路中的自然计算或未来的植物房屋。为了创建呈现特定形状的计算机模拟多细胞生物,我们将它们的发育理解为一个迭代过程,该过程结合了诸如稳态、模式形成、分割和肢体生长等基本的集体现象。我们的数值实验依赖于现有的大肠杆菌模拟器Gro,这是一个提供反应扩散和碰撞动力学求解器的物理化学计算平台。我们模型的合成生物软件在每个细胞中执行一组规则或基因组。细胞可以分化为与特定行动(分裂、发出信号、检测信号、死亡)相关的几种预定义类型。类型之间的转变由涉及内部和外部传感器的条件触发,这些传感器检测细胞内部和周围的各种蛋白质水平。细菌之间的间接通信通过形态发生素扩散和二维堆积的机械约束来传递。从单个细菌开始,整体结构通过一系列发育阶段以纯粹内生的方式出现,包括增殖、分化、形态发生素扩散和同步。基因组可以进行参数化设置,以分别控制附属物的生长和特征。正如我们获得的L形和T形所例证的那样,某些前体细胞可以被抑制,而其他细胞可以形成大小不同的肢体(同源性的差异)。这种形态发生表型为由核心体和肢体的递归阵列构成的更复杂形状,以及最重要的是为对无计划功能形式的进化发育探索开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验