Suppr超能文献

室温下制备三维中空氢氧化锌纳米花的简便方法。

A Facile Process for the Preparation of Three-Dimensional Hollow Zn(OH)2 Nanoflowers at Room Temperature.

作者信息

Cai Ren, Yang Dan, Zhang Liqing, Qiu Liping, Liang Hao, Chen Xigao, Cansiz Sena, Zhang Zuxiao, Wan Shuo, Stewart Kimberly, Yan Qingyu, Tan Weihong

机构信息

Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611-7200, USA.

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

出版信息

Chemistry. 2016 Aug 1;22(32):11143-7. doi: 10.1002/chem.201600906. Epub 2016 Jul 4.

Abstract

A facile strategy has been developed to synthesize double-shelled Zn(OH)2 nanoflowers (DNFs) at room temperature. The nanoflowers were generated via conversion of Cu2 O nanoparticles (NPs) using ZnCl2 and Na2 S2 O3 by a simple process. Outward diffusion of the Cu(2+) , produced by an oxidation process on the surface of NPs, and the inward diffusion of Zn(2+) by coordination and migration, eventually lead to a hollow cavity in the inner NPs with a double-shelled 3D hollow flower shapes. The thickness of the inner and outer shells is estimated to be about 20 nm, and the thickness of nanopetals is about 7 nm. The nanoflowers have large surface areas and excellent adsorption properties. As a proof of potential applications, the DNFs exhibited an excellent ability to remove organic molecules from aqueous solutions.

摘要

已开发出一种简便策略,可在室温下合成双壳层氢氧化锌纳米花(DNFs)。通过一个简单过程,利用氯化锌和硫代硫酸钠将氧化亚铜纳米颗粒(NPs)进行转化,从而生成这些纳米花。由纳米颗粒表面氧化过程产生的Cu(2+)向外扩散,以及通过配位和迁移产生的Zn(2+)向内扩散,最终导致内部纳米颗粒形成具有双壳层三维空心花形状的中空腔。内壳和外壳的厚度估计约为20 nm,纳米花瓣的厚度约为7 nm。这些纳米花具有大表面积和优异的吸附性能。作为潜在应用的一个证明,DNFs表现出从水溶液中去除有机分子的优异能力。

相似文献

1
A Facile Process for the Preparation of Three-Dimensional Hollow Zn(OH)2 Nanoflowers at Room Temperature.
Chemistry. 2016 Aug 1;22(32):11143-7. doi: 10.1002/chem.201600906. Epub 2016 Jul 4.
2
Single Nanoparticle to 3D Supercage: Framing for an Artificial Enzyme System.
J Am Chem Soc. 2015 Nov 4;137(43):13957-63. doi: 10.1021/jacs.5b09337. Epub 2015 Oct 23.
5
A Facile Multi-interface Transformation Approach to Monodisperse Multiple-Shelled Periodic Mesoporous Organosilica Hollow Spheres.
J Am Chem Soc. 2015 Jun 24;137(24):7935-44. doi: 10.1021/jacs.5b05369. Epub 2015 Jun 11.
10
Multi-shelled CeO₂ hollow microspheres as superior photocatalysts for water oxidation.
Nanoscale. 2014 Apr 21;6(8):4072-7. doi: 10.1039/c3nr06822f. Epub 2014 Mar 10.

本文引用的文献

1
Self-assembled metastable γ-Ga2O3 nanoflowers with hexagonal nanopetals for solar-blind photodetection.
Adv Mater. 2014 Sep;26(36):6238-43. doi: 10.1002/adma.201402047. Epub 2014 Aug 5.
2
DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery.
Angew Chem Int Ed Engl. 2014 Jun 2;53(23):5821-6. doi: 10.1002/anie.201400323. Epub 2014 Apr 17.
3
DNA-mediated nanoparticle crystallization into Wulff polyhedra.
Nature. 2014 Jan 2;505(7481):73-7. doi: 10.1038/nature12739. Epub 2013 Nov 27.
4
Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.
J Am Chem Soc. 2013 Nov 6;135(44):16438-45. doi: 10.1021/ja406115e. Epub 2013 Oct 28.
5
Anisotropic nanoparticles as shape-directing catalysts for the chemical etching of silicon.
J Am Chem Soc. 2013 Aug 21;135(33):12196-9. doi: 10.1021/ja4061867. Epub 2013 Aug 8.
6
Controlled synthesis of double-wall a-FePO4 nanotubes and their LIB cathode properties.
Small. 2013 Apr 8;9(7):1036-41. doi: 10.1002/smll.201202291. Epub 2012 Dec 13.
8
Three-dimensional structures self-assembled from DNA bricks.
Science. 2012 Nov 30;338(6111):1177-83. doi: 10.1126/science.1227268.
9
Protein-inorganic hybrid nanoflowers.
Nat Nanotechnol. 2012 Jun 3;7(7):428-32. doi: 10.1038/nnano.2012.80.
10
A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties.
Angew Chem Int Ed Engl. 2010 Jul 5;49(29):4962-6. doi: 10.1002/anie.201000902.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验