Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St Louis, Saint Louis, Missouri 63130, USA.
Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, California 95064, USA.
Nature. 2016 Jun 2;534(7605):82-5. doi: 10.1038/nature18289.
The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Pluto's vigorous geological activity. Composed of molecular nitrogen, methane, and carbon monoxide ices, but dominated by nitrogen ice, this layer is organized into cells or polygons, typically about 10 to 40 kilometres across, that resemble the surface manifestation of solid-state convection. Here we report, on the basis of available rheological measurements, that solid layers of nitrogen ice with a thickness in excess of about one kilometre should undergo convection for estimated present-day heat-flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-kilometre-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of nitrogen-ice viscosity implies that the ice layer convects in the so-called sluggish lid regime, a unique convective mode not previously definitively observed in the Solar System. Average surface horizontal velocities of a few centimetres a year imply surface transport or renewal times of about 500,000 years, well under the ten-million-year upper-limit crater retention age for Sputnik Planum. Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help to explain the high albedos shown by some of these bodies.
这个非正式命名为“史泼尼克平原”的广阔、深邃、充满易挥发冰的盆地是冥王星活跃地质活动的中心。由分子氮、甲烷和一氧化碳冰组成,但以氮冰为主,这一层组织成细胞或多边形,通常直径约 10 至 40 公里,类似于固态对流的表面表现。在这里,我们根据现有的流变测量结果报告,在估计的冥王星目前热流条件下,厚度超过约一公里的固态氮冰层应该会发生对流。更重要的是,我们通过数值模拟表明,在几公里厚的固态氮层中发生的对流翻转可以解释细胞的巨大侧向宽度。氮冰粘度的温度依赖性意味着冰层在所谓的滞流盖模式下发生对流,这是一种以前在太阳系中没有明确观察到的独特对流模式。平均每年几厘米的表面水平速度意味着表面运输或更新时间约为 50 万年,远低于史泼尼克平原的 100 万年上限撞击坑保留年龄。柯伊伯带中其他矮行星上也可能发生类似的对流表面更新,这有助于解释其中一些天体显示出的高反照率。