Wu Shan, Tutuncuoglu Beril, Yan Kaige, Brown Hailey, Zhang Yixiao, Tan Dan, Gamalinda Michael, Yuan Yi, Li Zhifei, Jakovljevic Jelena, Ma Chengying, Lei Jianlin, Dong Meng-Qiu, Woolford John L, Gao Ning
Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
Nature. 2016 Jun 2;534(7605):133-7. doi: 10.1038/nature17942. Epub 2016 May 25.
Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.
核糖体生物合成在真核生物中是一个高度复杂的过程,涉及核仁、核质和细胞质中核糖体蛋白(r蛋白)结合以及核糖体RNA重塑事件的时空调控。数百种组装因子被组织成连续的功能组,促进并引导成熟过程进入不同细胞区室内外的有效组装分支。然而,这些组装因子发挥作用的精确机制在很大程度上尚不清楚。在这里,我们使用冷冻电子显微镜来表征利用表位标记的组装因子Nog2亲和纯化的酵母核质前60S颗粒的结构。我们的数据确定了20多种组装因子的位置并解析了其结构,这些因子富集在两个区域:一个从中央突起延伸到多肽通道出口的弧形区域,以及包含分隔5.8S和25S核糖体RNA的内部转录间隔区2(ITS2)的结构域。特别是,两个调节性GTP酶Nog2和Nog1作为枢纽蛋白,与多个远距离的组装因子和功能性核糖体RNA元件相互作用,表明它们在结构重塑检查点和核输出中的关键作用。此外,我们对组成和结构不同的前60S中间体的快照为核输出前的三个主要重塑事件提供了重要的机制细节:5S核糖核蛋白的旋转、活性中心的构建和ITS2的去除。我们结构中丰富的结构信息为剖析各种组装因子在真核生物核糖体组装中的分子作用提供了一个框架。