Dunton Genevieve Fridlund, Dzubur Eldin, Intille Stephen
Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States.
J Med Internet Res. 2016 Jun 1;18(6):e106. doi: 10.2196/jmir.5398.
Objective physical activity monitors (eg, accelerometers) have high rates of nonwear and do not provide contextual information about behavior.
This study tested performance and value of a mobile phone app that combined objective and real-time self-report methods to measure physical activity using sensor-informed context-sensitive ecological momentary assessment (CS-EMA).
The app was programmed to prompt CS-EMA surveys immediately after 3 types of events detected by the mobile phone's built-in motion sensor: (1) Activity (ie, mobile phone movement), (2) No-Activity (ie, mobile phone nonmovement), and (3) No-Data (ie, mobile phone or app powered off). In addition, the app triggered random (ie, signal-contingent) ecological momentary assessment (R-EMA) prompts (up to 7 per day). A sample of 39 ethnically diverse high school students in the United States (aged 14-18, 54% female) tested the app over 14 continuous days during nonschool time. Both CS-EMA and R-EMA prompts assessed activity type (eg, reading or doing homework, eating or drinking, sports or exercising) and contextual characteristics of the activity (eg, location, social company, purpose). Activity was also measured with a waist-worn Actigraph accelerometer.
The average CS-EMA + R-EMA prompt compliance and survey completion rates were 80.5% and 98.5%, respectively. More moderate-to-vigorous intensity physical activity was recorded by the waist-worn accelerometer in the 30 minutes before CS-EMA activity prompts (M=5.84 minutes) than CS-EMA No-Activity (M=1.11 minutes) and CS-EMA No-Data (M=0.76 minute) prompts (P's<.001). Participants were almost 5 times as likely to report going somewhere (ie, active or motorized transit) in the 30 minutes before CS-EMA Activity than R-EMA prompts (odds ratio=4.91, 95% confidence interval=2.16-11.12).
Mobile phone apps using motion sensor-informed CS-EMA are acceptable among high school students and may be used to augment objective physical activity data collected from traditional waist-worn accelerometers.
客观身体活动监测器(如加速度计)的未佩戴率很高,且无法提供有关行为的背景信息。
本研究测试了一款手机应用程序的性能和价值,该应用程序结合了客观和实时自我报告方法,使用传感器告知的情境敏感生态瞬时评估(CS-EMA)来测量身体活动。
该应用程序被编程为在手机内置运动传感器检测到的3种类型的事件后立即提示进行CS-EMA调查:(1)活动(即手机移动),(2)无活动(即手机未移动),以及(3)无数据(即手机或应用程序关机)。此外,该应用程序触发随机(即信号依赖)生态瞬时评估(R-EMA)提示(每天最多7次)。美国39名不同种族的高中生(年龄14 - 18岁,54%为女性)在非上学时间连续14天测试了该应用程序。CS-EMA和R-EMA提示均评估活动类型(如阅读或做作业、饮食、运动或锻炼)以及活动的情境特征(如地点、社交陪伴、目的)。还使用佩戴在腰部的Actigraph加速度计测量身体活动。
CS-EMA + R-EMA提示的平均依从率和调查完成率分别为80.5%和98.5%。与CS-EMA无活动提示(M = 1.11分钟)和CS-EMA无数据提示(M = 0.76分钟)相比,腰部佩戴的加速度计在CS-EMA活动提示前30分钟记录到的中等到剧烈强度身体活动更多(M = 5.84分钟)(P值<.001)。在CS-EMA活动提示前30分钟,参与者报告外出(即主动或机动出行)的可能性几乎是R-EMA提示的5倍(优势比 = 4.91,95%置信区间 = 2.16 - 11.12)。
使用运动传感器告知的CS-EMA的手机应用程序在高中生中是可以接受的,并且可用于补充从传统腰部佩戴的加速度计收集的客观身体活动数据。