Suppr超能文献

具有时变延迟的忆阻神经网络的扩展耗散状态估计

Extended dissipative state estimation for memristive neural networks with time-varying delay.

作者信息

Xiao Jianying, Li Yongtao, Zhong Shouming, Xu Fang

机构信息

School of Sciences, Southwest Petroleum University, Chengdu 610050, PR China; School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, PR China.

College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610050, PR China.

出版信息

ISA Trans. 2016 Sep;64:113-128. doi: 10.1016/j.isatra.2016.05.007. Epub 2016 Jun 2.

Abstract

This paper investigates the problem of extended dissipative state estimation for memristor-based neural networks (MNNs) with time-varying delay. Based on both nonsmooth analysis and the construction of a new Lyapunov-Krasovskii functional, the extended dissipative state estimation criteria are obtained by mainly applying differential inclusions, set-valued maps and many new integral inequalities. The extended dissipative state estimation can be adopted to deal with l2-l∞ state estimation, H∞ state estimation, passive state estimation and dissipative state estimation by valuing the corresponding weighting matrices. Finally, two numerical examples are given to show the effectiveness and less conservatism of the proposed criteria.

摘要

本文研究了具有时变延迟的忆阻器神经网络(MNNs)的扩展耗散状态估计问题。基于非光滑分析和新的Lyapunov-Krasovskii泛函的构造,主要应用微分包含、集值映射和许多新的积分不等式,得到了扩展耗散状态估计准则。通过对相应加权矩阵赋值,扩展耗散状态估计可用于处理l2-l∞状态估计、H∞状态估计、无源状态估计和耗散状态估计。最后,给出了两个数值例子,以说明所提准则的有效性和较少的保守性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验