Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, Fukuoka, 808-0196, Japan.
Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
Neural Netw. 2016 Sep;81:29-38. doi: 10.1016/j.neunet.2016.05.002. Epub 2016 May 17.
We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video.
我们开发了一种实时执行尺度不变特征变换(SIFT)的视觉传感器系统。为了有效地应用 SIFT 算法,我们专注于视觉系统执行的两个过程:全图并行滤波和频带并行处理。视觉传感器系统包括有源像素传感器、基于金属氧化物半导体(MOS)的电阻网络、现场可编程门阵列(FPGA)和数字计算机。我们使用基于 MOS 的电阻网络进行瞬时空间滤波和可配置的滤波器大小。FPGA 用于流水线处理频带信号。通过跟踪视频中物体上检测到的特征点,对所提出的系统进行了评估。