Sadhu Biswajit, Sundararajan Mahesh
Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India.
Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai - 400 094, India.
Phys Chem Chem Phys. 2016 Jun 22;18(25):16748-56. doi: 10.1039/c6cp00747c.
The geometric structures and electron transfer properties of type 1 Cu proteins are reasonably understood at the molecular level (E. I. Solomon and R. G. Hadt, Coord. Chem. Rev., 2011, 255, 774-789, J. J. Warren, K. M. Lancaster, J. H. Richards and H. B. Gray, J. Inorg. Biochem., 2012, 115, 119-126). Much understanding of type 1 copper electron transfer reactivity has come from site directed mutagenesis studies. For example, artificial "type zero" Cu-centres constructed in cupredoxin-azurin have showcased the capacity of outer-sphere hydrogen bonding networks to enhance Cu II/I electron transfer reactivity. In this paper, we have elaborated on earlier kinetics and electronic structural studies of type zero Cu by calculating the inner sphere reorganization energies of type 1, type 2, and type zero Cu proteins using density functional theory (DFT). Although the choice of density functionals for copper systems is not straightforward, we have benchmarked the density functionals against the recently reported ESI-PES data for two synthetic copper models (S. Niu, D.-L. Huang, P. D. Dau, H.-T. Liu, L.-S. Wang and T. J. Ichiye, Chem. Theory Comput., 2014, 10, 1283). For the Cu proteins, our calculations predict that changes in the coordination number upon metal reduction lead to large inner sphere reorganization energies for type 2 Cu sites, whereas retention in the coordination number is observed for type zero Cu sites. These variations in the coordination number are modulated by the outer-sphere coordinating residues Asn47 and Phe114, which are involved in hydrogen bonding with the Asp112 side chain.
1型铜蛋白的几何结构和电子转移特性在分子水平上已得到合理理解(E. I. 所罗门和R. G. 哈德特,《配位化学评论》,2011年,第255卷,第774 - 789页;J. J. 沃伦、K. M. 兰卡斯特、J. H. 理查兹和H. B. 格雷,《无机生物化学杂志》,2012年,第115卷,第119 - 126页)。对1型铜电子转移反应性的许多理解来自定点诱变研究。例如,在铜蓝蛋白 - 天青蛋白中构建的人工“0型”铜中心展示了外层氢键网络增强Cu II/I电子转移反应性的能力。在本文中,我们通过使用密度泛函理论(DFT)计算1型、2型和0型铜蛋白的内球重组能,对早期0型铜的动力学和电子结构研究进行了详细阐述。尽管选择用于铜体系的密度泛函并非易事,但我们已根据最近报道的两种合成铜模型的电喷雾光电子能谱(ESI - PES)数据对密度泛函进行了基准测试(S. 牛、D. - L. 黄、P. D. 道、H. - T. 刘、L. - S. 王和T. J. 市江,《化学理论计算》,2014年,第10卷,第1283页)。对于铜蛋白,我们的计算预测,金属还原时配位数的变化会导致2型铜位点产生较大的内球重组能,而0型铜位点的配位数保持不变。配位数的这些变化受外层配位残基Asn47和Phe114调节,它们参与与Asp112侧链的氢键形成。