Kitajima Kaoru, Wright S Joseph, Westbrook Jared W
Graduate School of Agriculture, Kyoto University, Kyoto, Japan; Department of Biology, University of Florida, Gainesville, FL, USA; Smithsonian Tropical Research Institute, Balboa, Panama.
Smithsonian Tropical Research Institute , Balboa , Panama.
Interface Focus. 2016 Jun 6;6(3):20150100. doi: 10.1098/rsfs.2015.0100.
Leaves as the main photosynthetic organ of plants must be well protected against various hazards to achieve their optimal lifespans. Yet, within-species variation and the material basis of leaf strength have been explored for very few species. Here, we present a large dataset of leaf fracture toughness from a species-rich humid tropical forest on Barro Colorado Island, Panama, reporting both among- and within-species variation in relation to light environment (sun-lit canopy versus shaded understorey) and ontogeny (seedlings versus adults). In this dataset encompassing 281 free-standing woody species and 428 species-light combinations, lamina fracture toughness varied ca 10 times. A central objective of our study was to identify generalizable patterns in the structural and material basis for interspecific variation in leaf lamina fracture toughness. The leaf lamina is a heterogeneous structure in which strong materials in cell walls, such as cellulose and lignin, contribute disproportionately to fracture toughness. We found significant increases in leaf fracture toughness from shade to sun and from seedling leaves to adult leaves. Both within and across species, leaf fracture toughness increased with total bulk density (dry biomass per unit volume) and cellulose mass concentration, but decreased with mass concentrations of lignin and hemicelluose. These bivariate relationships shift between light environments, but leaf cellulose density (cellulose mass per unit leaf volume) exhibits a common relationship with lamina fracture toughness between light environments and through ontogeny. Hence, leaf cellulose density is probably a universal predictor of leaf fracture toughness.
叶片作为植物主要的光合器官,必须得到良好保护以抵御各种危害,从而实现其最佳寿命。然而,针对极少物种探究了种内变异以及叶片强度的物质基础。在此,我们展示了来自巴拿马巴罗科罗拉多岛物种丰富的湿润热带森林的大量叶片断裂韧性数据集,报告了与光照环境(阳光照射的树冠层与阴暗的林下植被)和个体发育(幼苗与成体)相关的种间和种内变异。在这个包含281种独立木本植物和428种物种 - 光照组合的数据集中,叶片的断裂韧性变化约10倍。我们研究的一个核心目标是确定叶片断裂韧性种间变异的结构和物质基础中的可概括模式。叶片是一种异质结构,其中细胞壁中的强材料,如纤维素和木质素,对断裂韧性的贡献不成比例。我们发现从阴暗处到阳光处以及从幼苗叶片到成体叶片,叶片断裂韧性显著增加。在种内和种间,叶片断裂韧性均随总体积密度(单位体积干生物量)和纤维素质量浓度增加,但随木质素和半纤维素的质量浓度降低。这些双变量关系在不同光照环境之间会发生变化,但叶片纤维素密度(单位叶片体积的纤维素质量)在不同光照环境之间以及个体发育过程中与叶片断裂韧性呈现出共同关系。因此,叶片纤维素密度可能是叶片断裂韧性的一个通用预测指标。