Suppr超能文献

高盐通过上调ETB受体表达诱导内皮素-1(ET-1)对髓质内层集合管一氧化氮(NO)生成的自分泌作用。

High salt induces autocrine actions of ET-1 on inner medullary collecting duct NO production via upregulated ETB receptor expression.

作者信息

Hyndman Kelly Anne, Dugas Courtney, Arguello Alexandra M, Goodchild Traci T, Buckley Kathleen M, Burch Mariah, Yanagisawa Masashi, Pollock Jennifer S

机构信息

Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;

Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana; and.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2016 Aug 1;311(2):R263-71. doi: 10.1152/ajpregu.00016.2015. Epub 2016 Jun 8.

Abstract

The collecting duct endothelin-1 (ET-1), endothelin B (ETB) receptor, and nitric oxide synthase-1 (NOS1) pathways are critical for regulation of fluid-electrolyte balance and blood pressure control during high-salt feeding. ET-1, ETB receptor, and NOS1 are highly expressed in the inner medullary collecting duct (IMCD) and vasa recta, suggesting that there may be cross talk or paracrine signaling between the vasa recta and IMCD. The purpose of this study was to test the hypothesis that endothelial cell-derived ET-1 (paracrine) and collecting duct-derived ET-1 (autocrine) promote IMCD nitric oxide (NO) production through activation of the ETB receptor during high-salt feeding. We determined that after 7 days of a high-salt diet (HS7), there was a shift to 100% ETB expression in IMCDs, as well as a twofold increase in nitrite production (a metabolite of NO), and this increase could be prevented by acute inhibition of the ETB receptor. ETB receptor blockade or NOS1 inhibition also prevented the ET-1-dependent decrease in ion transport from primary IMCDs, as determined by transepithelial resistance. IMCD were also isolated from vascular endothelial ET-1 knockout mice (VEETKO), collecting duct ET-1 KO (CDET-1KO), and flox controls. Nitrite production by IMCD from VEETKO and flox mice was similarly increased twofold with HS7. However, IMCD NO production from CDET-1KO mice was significantly blunted with HS7 compared with flox control. Taken together, these data indicate that during high-salt feeding, the autocrine actions of ET-1 via upregulation of the ETB receptor are critical for IMCD NO production, facilitating inhibition of ion reabsorption.

摘要

在高盐饮食期间,集合管内皮素 -1(ET-1)、内皮素B(ETB)受体和一氧化氮合酶 -1(NOS1)通路对于调节水电解质平衡和控制血压至关重要。ET-1、ETB受体和NOS1在内髓集合管(IMCD)和直小血管中高度表达,这表明直小血管和IMCD之间可能存在相互作用或旁分泌信号。本研究的目的是检验以下假设:在高盐饮食期间,内皮细胞衍生的ET-1(旁分泌)和集合管衍生的ET-1(自分泌)通过激活ETB受体促进IMCD一氧化氮(NO)的产生。我们确定,在高盐饮食7天(HS7)后,IMCD中ETB表达转变为100%,同时亚硝酸盐产生(NO的代谢产物)增加了两倍,并且这种增加可通过急性抑制ETB受体来预防。通过跨上皮电阻测定,ETB受体阻断或NOS1抑制也可预防原发性IMCD中ET-1依赖性离子转运的减少。IMCD也从小鼠血管内皮ET-1基因敲除小鼠(VEETKO)、集合管ET-1基因敲除小鼠(CDET-1KO)和对照小鼠中分离出来。HS7使VEETKO小鼠和对照小鼠的IMCD亚硝酸盐产生同样增加两倍。然而,与对照小鼠相比,HS7使CDET-1KO小鼠的IMCD NO产生明显减弱。综上所述,这些数据表明,在高盐饮食期间,ET-1通过上调ETB受体的自分泌作用对于IMCD NO的产生至关重要,有助于抑制离子重吸收。

相似文献

1
High salt induces autocrine actions of ET-1 on inner medullary collecting duct NO production via upregulated ETB receptor expression.
Am J Physiol Regul Integr Comp Physiol. 2016 Aug 1;311(2):R263-71. doi: 10.1152/ajpregu.00016.2015. Epub 2016 Jun 8.
2
Collecting duct-specific knockout of the endothelin B receptor causes hypertension and sodium retention.
Am J Physiol Renal Physiol. 2006 Dec;291(6):F1274-80. doi: 10.1152/ajprenal.00190.2006. Epub 2006 Jul 25.
5
NOS1-dependent negative feedback regulation of the epithelial sodium channel in the collecting duct.
Am J Physiol Renal Physiol. 2015 Feb 1;308(3):F244-51. doi: 10.1152/ajprenal.00596.2013. Epub 2014 Nov 12.
6
Salt control. Focus on "High salt induces autocrine actions of ET-1 on inner medullary collecting duct NO production via upregulated ETB receptor expression".
Am J Physiol Regul Integr Comp Physiol. 2016 Aug 1;311(2):R374-6. doi: 10.1152/ajpregu.00329.2016. Epub 2016 Jul 27.
7
Dynamin-2 is a novel NOS1β interacting protein and negative regulator in the collecting duct.
Am J Physiol Regul Integr Comp Physiol. 2016 Apr 1;310(7):R570-7. doi: 10.1152/ajpregu.00008.2015. Epub 2016 Jan 20.
8
High salt intake induces collecting duct HDAC1-dependent NO signaling.
Am J Physiol Renal Physiol. 2021 Mar 1;320(3):F297-F307. doi: 10.1152/ajprenal.00323.2020. Epub 2020 Dec 28.
9
Distinct regulation of inner medullary collecting duct nitric oxide production from mice and rats.
Clin Exp Pharmacol Physiol. 2013 Mar;40(3):233-9. doi: 10.1111/1440-1681.12057.
10
Nitric oxide and the A and B of endothelin of sodium homeostasis.
Curr Opin Nephrol Hypertens. 2013 Jan;22(1):26-31. doi: 10.1097/MNH.0b013e32835b4edc.

引用本文的文献

1
Silent Effects of High Salt: Risks Beyond Hypertension and Body's Adaptation to High Salt.
Biomedicines. 2025 Mar 18;13(3):746. doi: 10.3390/biomedicines13030746.
2
Acclimation to a High-Salt Diet Is Sex Dependent.
J Am Heart Assoc. 2022 Mar;11(5):e020450. doi: 10.1161/JAHA.120.020450. Epub 2022 Feb 22.
3
The acute pressure natriuresis response is suppressed by selective ETA receptor blockade.
Clin Sci (Lond). 2021 Dec 17;136(1):15-28. doi: 10.1042/CS20210937.
4
Role of collecting duct principal cell NOS1β in sodium and potassium homeostasis.
Physiol Rep. 2021 Oct;9(20):e15080. doi: 10.14814/phy2.15080.
5
Liver circadian clock disruption alters perivascular adipose tissue gene expression and aortic function in mice.
Am J Physiol Regul Integr Comp Physiol. 2021 Jun 1;320(6):R960-R971. doi: 10.1152/ajpregu.00128.2020. Epub 2021 Apr 21.
6
High salt intake induces collecting duct HDAC1-dependent NO signaling.
Am J Physiol Renal Physiol. 2021 Mar 1;320(3):F297-F307. doi: 10.1152/ajprenal.00323.2020. Epub 2020 Dec 28.
7
Loss of circadian gene in the collecting duct lowers blood pressure in male, but not female, mice.
Am J Physiol Renal Physiol. 2020 Mar 1;318(3):F710-F719. doi: 10.1152/ajprenal.00364.2019. Epub 2020 Jan 6.
9
Tauroursodeoxycholic acid (TUDCA) abolishes chronic high salt-induced renal injury and inflammation.
Acta Physiol (Oxf). 2019 May;226(1):e13227. doi: 10.1111/apha.13227. Epub 2018 Dec 23.
10
Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension.
Physiol Rev. 2019 Jan 1;99(1):235-309. doi: 10.1152/physrev.00055.2017.

本文引用的文献

1
Dynamin-2 is a novel NOS1β interacting protein and negative regulator in the collecting duct.
Am J Physiol Regul Integr Comp Physiol. 2016 Apr 1;310(7):R570-7. doi: 10.1152/ajpregu.00008.2015. Epub 2016 Jan 20.
2
High salt intake increases endothelin B receptor function in the renal medulla of rats.
Life Sci. 2016 Aug 15;159:144-147. doi: 10.1016/j.lfs.2015.12.038. Epub 2015 Dec 24.
3
Osmolar regulation of endothelin-1 production by the inner medullary collecting duct.
Life Sci. 2016 Aug 15;159:135-139. doi: 10.1016/j.lfs.2015.10.037. Epub 2015 Nov 10.
4
Endothelin-1 as a master regulator of whole-body Na+ homeostasis.
FASEB J. 2015 Dec;29(12):4937-44. doi: 10.1096/fj.15-276584. Epub 2015 Aug 12.
5
NOS1-dependent negative feedback regulation of the epithelial sodium channel in the collecting duct.
Am J Physiol Renal Physiol. 2015 Feb 1;308(3):F244-51. doi: 10.1152/ajprenal.00596.2013. Epub 2014 Nov 12.
6
Agonist-promoted ubiquitination differentially regulates receptor trafficking of endothelin type A and type B receptors.
J Biol Chem. 2014 Dec 19;289(51):35283-95. doi: 10.1074/jbc.M113.544171. Epub 2014 Nov 7.
7
ET-1 increases reactive oxygen species following hypoxia and high-salt diet in the mouse glomerulus.
Acta Physiol (Oxf). 2015 Mar;213(3):722-30. doi: 10.1111/apha.12397. Epub 2014 Sep 29.
8
Vascular endothelium derived endothelin-1 is required for normal heart function after chronic pressure overload in mice.
PLoS One. 2014 Feb 11;9(2):e88730. doi: 10.1371/journal.pone.0088730. eCollection 2014.
9
Sex differences in ET-1 receptor expression and Ca2+ signaling in the IMCD.
Am J Physiol Renal Physiol. 2013 Oct 15;305(8):F1099-104. doi: 10.1152/ajprenal.00400.2013. Epub 2013 Aug 14.
10
Physiology of endothelin and the kidney.
Compr Physiol. 2011 Apr;1(2):883-919. doi: 10.1002/cphy.c100039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验