Rovelli Grazia, Miles Rachael E H, Reid Jonathan P, Clegg Simon L
School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K.
Department of Earth and Environmental Sciences, University of Milano-Bicocca , 20124 Milan, Italy.
J Phys Chem A. 2016 Jun 30;120(25):4376-88. doi: 10.1021/acs.jpca.6b04194. Epub 2016 Jun 17.
Using a comparative evaporation kinetics approach, we describe a new and accurate method for determining the equilibrium hygroscopic growth of aerosol droplets. The time-evolving size of an aqueous droplet, as it evaporates to a steady size and composition that is in equilibrium with the gas phase relative humidity, is used to determine the time-dependent mass flux of water, yielding information on the vapor pressure of water above the droplet surface at every instant in time. Accurate characterization of the gas phase relative humidity is provided from a control measurement of the evaporation profile of a droplet of know equilibrium properties, either a pure water droplet or a sodium chloride droplet. In combination, and by comparison with simulations that account for both the heat and mass transport governing the droplet evaporation kinetics, these measurements allow accurate retrieval of the equilibrium properties of the solution droplet (i.e., the variations with water activity in the mass fraction of solute, diameter growth factor, osmotic coefficient or number of water molecules per solute molecule). Hygroscopicity measurements can be made over a wide range in water activity (from >0.99 to, in principle, <0.05) on time scales of <10 s for droplets containing involatile or volatile solutes. The approach is benchmarked for binary and ternary inorganic solution aerosols with typical uncertainties in water activity of <±0.2% at water activities >0.9 and ∼±1% below 80% RH, and maximum uncertainties in diameter growth factor of ±0.7%. For all of the inorganic systems examined, the time-dependent data are consistent with large values of the mass accommodation (or evaporation) coefficient (>0.1).
采用比较蒸发动力学方法,我们描述了一种测定气溶胶液滴平衡吸湿增长的新的精确方法。随着水滴蒸发至与气相相对湿度达到平衡的稳定尺寸和组成,其随时间变化的尺寸用于确定随时间变化的水质量通量,从而得出水滴表面上方每时每刻水的蒸气压信息。通过对具有已知平衡特性的液滴(纯水液滴或氯化钠液滴)蒸发曲线的对照测量,可精确表征气相相对湿度。结合这些测量,并与考虑控制液滴蒸发动力学的热质传输的模拟结果进行比较,能够准确获取溶液液滴的平衡特性(即溶质质量分数、直径增长因子、渗透系数或每个溶质分子的水分子数随水活度的变化)。对于含有非挥发性或挥发性溶质的液滴,可在<10 s的时间尺度上,在较宽的水活度范围内(从>0.99到理论上<0.05)进行吸湿性测量。该方法以二元和三元无机溶液气溶胶为基准,在水活度>0.9时,水活度的典型不确定度<±0.2%,在相对湿度低于80%时约为±1%,直径增长因子的最大不确定度为±0.7%。对于所有研究的无机体系,随时间变化的数据与较大的质量容纳(或蒸发)系数值(>0.1)一致。