Tu YanHua, Liu Fei, Guo DanDan, Fan LiJiao, Zhu ZhenXian, Xue YingRu, Gao Yue, Guo MeiLi
School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China.
School of Biological and Environmental Sciences, Nanjing Forestry University, Nanjing, 210095, People's Republic of China.
BMC Plant Biol. 2016 Jun 10;16(1):132. doi: 10.1186/s12870-016-0813-5.
Among secondary metabolites, flavonoids are particularly crucial for plant growth, development, and reproduction, as well as beneficial for maintenance of human health. As a flowering plant, safflower has synthesized a striking variety of flavonoids with various pharmacologic properties. However, far less research has been carried out on the genes involved in the biosynthetic pathways that generate these amazing flavonoids, especially characterized quinochalcones. In this study, we first cloned and investigated the participation of a presumed flavanone 3-hydroxylase gene (F3H) from safflower (CtF3H) in a flavonoid biosynthetic pathway.
Bioinformation analysis showed that CtF3H shared high conserved residues and confidence with F3H from other plants. Subcellular localization uncovered the nuclear and cytosol localization of CtF3H in onion epidermal cells. The functional expressions of CtF3H in Escherichia coli BL21(DE3)pLysS cells in the pMAL-C5x vector led to the production of dihydrokaempferol when naringenin was the substrate. Furthermore, the transcriptome expression of CtF3H showed a diametrically opposed expression pattern in a quinochalcone-type safflower line (with orange-yellow flowers) and a flavonol-type safflower line (with white flowers) under external stimulation by methyl jasmonate (MeJA), which has been identified as an elicitor of flavonoid metabolites. Further metabolite analysis showed the increasing tendency of quinochalcones and flavonols, such as hydroxysafflor yellow A, kaempferol-3-O-β-D-glucoside, kaempferol-3-O-β-rutinoside, rutin, carthamin, and luteolin, in the quinochalcone-type safflower line. Also, the accumulation of kaempferol-3-O-β-rutinoside and kaempferol-3-O-β-D-glucoside in flavonols-typed safflower line showed enhanced accumulation pattern after MeJA treatment. However, other flavonols, such as kaempferol, dihydrokaempferol and quercetin-3-O-β-D-glucoside, in flavonols-typed safflower line presented down accumulation respond to MeJA stimulus.
Our results showed that the high expression of CtF3H in quinochalcone-type safflower line was associated with the accumulation of both quinochalcones and flavonols, whereas its low expression did not affect the increased accumulation of glycosylated derivatives (kaempferol-3-O-β-rutinoside and rutin) in flavonols-typed safflower line but affect the upstream precursors (D-phenylalanine, dihydrokaempferol, kaempferol), which partly revealed the function of CtF3H in different phenotypes and chemotypes of safflower lines.
在次生代谢产物中,黄酮类化合物对植物的生长、发育和繁殖尤为重要,对维护人类健康也有益处。作为一种开花植物,红花合成了种类繁多、具有各种药理特性的黄酮类化合物。然而,对于参与生成这些惊人黄酮类化合物(尤其是特征性的喹诺查耳酮)的生物合成途径的基因,所开展的研究要少得多。在本研究中,我们首先克隆并研究了来自红花的一个假定的黄烷酮3 - 羟化酶基因(CtF3H)在黄酮类生物合成途径中的参与情况。
生物信息分析表明,CtF3H与其他植物的F3H具有高度保守的残基和可信度。亚细胞定位揭示了CtF3H在洋葱表皮细胞中的细胞核和细胞质定位。当柚皮素作为底物时,CtF3H在pMAL - C5x载体中于大肠杆菌BL21(DE3)pLysS细胞中的功能表达导致了二氢山奈酚的产生。此外,在茉莉酸甲酯(MeJA,已被确定为黄酮类代谢产物的诱导剂)的外部刺激下,CtF3H的转录组表达在喹诺查耳酮型红花品系(开橙黄色花)和黄酮醇型红花品系(开白色花)中呈现出完全相反的表达模式。进一步的代谢物分析表明,喹诺查耳酮型红花品系中喹诺查耳酮和黄酮醇(如羟基红花黄色素A、山奈酚 - 3 - O - β - D - 葡萄糖苷、山奈酚 - 3 - O - β - 芸香糖苷、芦丁、红花苷和木犀草素)有增加的趋势。同样,黄酮醇型红花品系中,茉莉酸甲酯处理后山奈酚 - 3 - O - β - 芸香糖苷和山奈酚 - 3 - O - β - D - 葡萄糖苷的积累呈现出增强的积累模式。然而,黄酮醇型红花品系中的其他黄酮醇(如山奈酚、二氢山奈酚和槲皮素 - 3 - O - β - D - 葡萄糖苷)对茉莉酸甲酯刺激呈现出积累下降的反应。
我们的结果表明,CtF3H在喹诺查耳酮型红花品系中的高表达与喹诺查耳酮和黄酮醇的积累相关,而其低表达虽不影响黄酮醇型红花品系中糖基化衍生物(山奈酚 - 3 - O - β - 芸香糖苷和芦丁)积累的增加,但影响上游前体(D - 苯丙氨酸、二氢山奈酚、山奈酚),这部分揭示了CtF3H在不同表型和化学型红花品系中的功能。