Suppr超能文献

Wnt信号通路基因wls、wnt9a、wnt5b、frzb和gpc4在斑马鱼腭部形态发生过程中调节汇聚延伸的作用。

Roles of Wnt pathway genes wls, wnt9a, wnt5b, frzb and gpc4 in regulating convergent-extension during zebrafish palate morphogenesis.

作者信息

Rochard Lucie, Monica Stefanie D, Ling Irving T C, Kong Yawei, Roberson Sara, Harland Richard, Halpern Marnie, Liao Eric C

机构信息

Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA.

Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.

出版信息

Development. 2016 Jul 15;143(14):2541-7. doi: 10.1242/dev.137000. Epub 2016 Jun 10.

Abstract

The Wnt signaling pathway is crucial for tissue morphogenesis, participating in cellular behavior changes, notably during the process of convergent-extension. Interactions between Wnt-secreting and receiving cells during convergent-extension remain elusive. We investigated the role and genetic interactions of Wnt ligands and their trafficking factors Wls, Gpc4 and Frzb in the context of palate morphogenesis in zebrafish. We describe that the chaperon Wls and its ligands Wnt9a and Wnt5b are expressed in the ectoderm, whereas juxtaposed chondrocytes express Frzb and Gpc4. Using wls, gpc4, frzb, wnt9a and wnt5b mutants, we genetically dissected the Wnt signals operating between secreting ectoderm and receiving chondrocytes. Our analysis delineates that non-canonical Wnt signaling is required for cell intercalation, and that wnt5b and wnt9a are required for palate extension in the anteroposterior and transverse axes, respectively.

摘要

Wnt信号通路对于组织形态发生至关重要,参与细胞行为变化,尤其是在汇聚延伸过程中。在汇聚延伸过程中,分泌Wnt的细胞与接收Wnt的细胞之间的相互作用仍不清楚。我们研究了Wnt配体及其转运因子Wls、Gpc4和Frzb在斑马鱼腭部形态发生过程中的作用和遗传相互作用。我们描述了伴侣蛋白Wls及其配体Wnt9a和Wnt5b在外胚层中表达,而相邻的软骨细胞表达Frzb和Gpc4。利用wls、gpc4、frzb、wnt9a和wnt5b突变体,我们对分泌外胚层和接收软骨细胞之间起作用的Wnt信号进行了遗传学剖析。我们的分析表明,非经典Wnt信号传导是细胞插入所必需的,并且wnt5b和wnt9a分别是腭部在前后轴和横轴上延伸所必需的。

相似文献

3
Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification.
Dev Biol. 2017 Jan 15;421(2):219-232. doi: 10.1016/j.ydbio.2016.11.016. Epub 2016 Nov 29.
4
A role of glypican4 and wnt5b in chondrocyte stacking underlying craniofacial cartilage morphogenesis.
Mech Dev. 2015 Nov;138 Pt 3:279-90. doi: 10.1016/j.mod.2015.10.001. Epub 2015 Oct 14.
5
Zebrafish wnt9a is expressed in pharyngeal ectoderm and is required for palate and lower jaw development.
Mech Dev. 2011 Jan-Feb;128(1-2):104-15. doi: 10.1016/j.mod.2010.11.003. Epub 2010 Nov 18.
6
Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrafish palate morphogenesis.
Development. 2013 Jan 1;140(1):76-81. doi: 10.1242/dev.080473. Epub 2012 Nov 15.
7
Control of Wnt5b secretion by Wntless modulates chondrogenic cell proliferation through fine-tuning fgf3 expression.
J Cell Sci. 2015 Jun 15;128(12):2328-39. doi: 10.1242/jcs.167403. Epub 2015 May 1.
9
Loss of Porcupine impairs convergent extension during gastrulation in zebrafish.
J Cell Sci. 2012 May 1;125(Pt 9):2224-34. doi: 10.1242/jcs.098368. Epub 2012 Feb 22.
10
Role of lbx2 in the noncanonical Wnt signaling pathway for convergence and extension movements and hypaxial myogenesis in zebrafish.
Biochim Biophys Acta. 2012 May;1823(5):1024-32. doi: 10.1016/j.bbamcr.2012.02.013. Epub 2012 Mar 3.

引用本文的文献

1
Wnt/β-Catenin Signaling and Congenital Abnormalities of Kidney and Urinary Tract.
Kidney Dis (Basel). 2024 Oct 3;10(6):588-599. doi: 10.1159/000541684. eCollection 2024 Dec.
2
WNT9A and WNT9B in Development and Disease.
Differentiation. 2025 Mar-Apr;142:100820. doi: 10.1016/j.diff.2024.100820. Epub 2024 Nov 22.
4
Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish.
Front Cell Dev Biol. 2024 Feb 7;12:1338070. doi: 10.3389/fcell.2024.1338070. eCollection 2024.
5
Genetic association and functional validation of ZFP36L2 in non-syndromic orofacial cleft subtypes.
J Hum Genet. 2024 Apr;69(3-4):139-144. doi: 10.1038/s10038-024-01222-z. Epub 2024 Feb 6.

本文引用的文献

2
A role of glypican4 and wnt5b in chondrocyte stacking underlying craniofacial cartilage morphogenesis.
Mech Dev. 2015 Nov;138 Pt 3:279-90. doi: 10.1016/j.mod.2015.10.001. Epub 2015 Oct 14.
3
Genetic compensation induced by deleterious mutations but not gene knockdowns.
Nature. 2015 Aug 13;524(7564):230-3. doi: 10.1038/nature14580. Epub 2015 Jul 13.
4
Distinct requirements for Wntless in habenular development.
Dev Biol. 2015 Oct 15;406(2):117-128. doi: 10.1016/j.ydbio.2015.06.006. Epub 2015 Jun 23.
6
Heritable and precise zebrafish genome editing using a CRISPR-Cas system.
PLoS One. 2013 Jul 9;8(7):e68708. doi: 10.1371/journal.pone.0068708. Print 2013.
8
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.
Nat Biotechnol. 2013 Sep;31(9):822-6. doi: 10.1038/nbt.2623. Epub 2013 Jun 23.
9
Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish.
Development. 2013 Jul;140(13):2835-46. doi: 10.1242/dev.094631.
10
Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrafish palate morphogenesis.
Development. 2013 Jan 1;140(1):76-81. doi: 10.1242/dev.080473. Epub 2012 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验