Suppr超能文献

肌纤维中的骨钙素信号对于最佳运动适应性而言是必要且充分的。

Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise.

作者信息

Mera Paula, Laue Kathrin, Ferron Mathieu, Confavreux Cyril, Wei Jianwen, Galán-Díez Marta, Lacampagne Alain, Mitchell Sarah J, Mattison Julie A, Chen Yun, Bacchetta Justine, Szulc Pawel, Kitsis Richard N, de Cabo Rafael, Friedman Richard A, Torsitano Christopher, McGraw Timothy E, Puchowicz Michelle, Kurland Irwin, Karsenty Gerard

机构信息

Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.

INSERM UMR1033-Université de Lyon, Hospices Civils de Lyon, Lyon 69003, France.

出版信息

Cell Metab. 2016 Jun 14;23(6):1078-1092. doi: 10.1016/j.cmet.2016.05.004.

Abstract

Circulating levels of undercarboxylated and bioactive osteocalcin double during aerobic exercise at the time levels of insulin decrease. In contrast, circulating levels of osteocalcin plummet early during adulthood in mice, monkeys, and humans of both genders. Exploring these observations revealed that osteocalcin signaling in myofibers is necessary for adaptation to exercise by favoring uptake and catabolism of glucose and fatty acids, the main nutrients of myofibers. Osteocalcin signaling in myofibers also accounts for most of the exercise-induced release of interleukin-6, a myokine that promotes adaptation to exercise in part by driving the generation of bioactive osteocalcin. We further show that exogenous osteocalcin is sufficient to enhance the exercise capacity of young mice and to restore to 15-month-old mice the exercise capacity of 3-month-old mice. This study uncovers a bone-to-muscle feedforward endocrine axis that favors adaptation to exercise and can reverse the age-induced decline in exercise capacity.

摘要

在胰岛素水平下降时,有氧运动期间未羧化且具有生物活性的骨钙素的循环水平会翻倍。相比之下,在小鼠、猴子和两性人类成年早期,骨钙素的循环水平会急剧下降。对这些观察结果的探索表明,肌纤维中的骨钙素信号传导对于通过促进肌纤维主要营养物质葡萄糖和脂肪酸的摄取及分解代谢来适应运动是必要的。肌纤维中的骨钙素信号传导还占运动诱导的白细胞介素-6释放的大部分,白细胞介素-6是一种肌动蛋白,部分通过驱动生物活性骨钙素的生成来促进对运动的适应。我们进一步表明,外源性骨钙素足以增强幼鼠的运动能力,并使15月龄小鼠恢复到3月龄小鼠的运动能力。这项研究揭示了一种从骨骼到肌肉的前馈内分泌轴,它有利于适应运动,并能逆转年龄引起的运动能力下降。

相似文献

1
Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise.
Cell Metab. 2016 Jun 14;23(6):1078-1092. doi: 10.1016/j.cmet.2016.05.004.
2
Molecular bases of the crosstalk between bone and muscle.
Bone. 2018 Oct;115:43-49. doi: 10.1016/j.bone.2017.04.006. Epub 2017 Apr 18.
3
Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts.
J Clin Invest. 2020 Jun 1;130(6):2888-2902. doi: 10.1172/JCI133572.
4
Osteocalcin is necessary and sufficient to maintain muscle mass in older mice.
Mol Metab. 2016 Jul 16;5(10):1042-1047. doi: 10.1016/j.molmet.2016.07.002. eCollection 2016 Oct.
5
AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity.
FASEB J. 2014 Jul;28(7):3211-24. doi: 10.1096/fj.14-250449. Epub 2014 Mar 20.
6
The effects of muscle contraction and recombinant osteocalcin on insulin sensitivity ex vivo.
Osteoporos Int. 2016 Feb;27(2):653-63. doi: 10.1007/s00198-015-3273-0. Epub 2015 Aug 11.
7
Histone deacetylase 5 regulates interleukin 6 secretion and insulin action in skeletal muscle.
Mol Metab. 2020 Dec;42:101062. doi: 10.1016/j.molmet.2020.101062. Epub 2020 Aug 6.
8
Muscle, Bone, and Fat Crosstalk: the Biological Role of Myokines, Osteokines, and Adipokines.
Curr Osteoporos Rep. 2020 Aug;18(4):388-400. doi: 10.1007/s11914-020-00599-y.
9
Ginkgolide B facilitates muscle regeneration via rejuvenating osteocalcin-mediated bone-to-muscle modulation in aged mice.
J Cachexia Sarcopenia Muscle. 2023 Jun;14(3):1349-1364. doi: 10.1002/jcsm.13228. Epub 2023 Apr 19.
10
Promotion of insulin-induced glucose uptake in C2C12 myotubes by osteocalcin.
Biochem Biophys Res Commun. 2015 Apr 10;459(3):437-42. doi: 10.1016/j.bbrc.2015.02.123. Epub 2015 Feb 28.

引用本文的文献

1
Two decades into the crosstalk between bone and energy metabolism.
Nat Rev Endocrinol. 2025 Sep 4. doi: 10.1038/s41574-025-01179-9.
2
Physical Activity, Exerkines, and Their Role in Cancer Cachexia.
Int J Mol Sci. 2025 Aug 19;26(16):8011. doi: 10.3390/ijms26168011.
4
Undercarboxylated OCN Inhibits Chondrocyte Hypertrophy and Osteoarthritis Development through GPRC6A/HIF-1α Cascade.
Int J Biol Sci. 2025 Jun 23;21(10):4353-4373. doi: 10.7150/ijbs.105560. eCollection 2025.
5
Volatile organic compounds exposure associated with sarcopenia in US adults from NHANES 2011-2018.
Front Public Health. 2025 Jul 15;13:1613435. doi: 10.3389/fpubh.2025.1613435. eCollection 2025.
6
Bone-muscle interactions.
Osteoporos Sarcopenia. 2025 Jun;11(2 Suppl):32-39. doi: 10.1016/j.afos.2025.04.001. Epub 2025 May 17.
9
Biomolecular Basis of Life.
Metabolites. 2025 Jun 16;15(6):404. doi: 10.3390/metabo15060404.

本文引用的文献

1
Bone and Muscle Endocrine Functions: Unexpected Paradigms of Inter-organ Communication.
Cell. 2016 Mar 10;164(6):1248-1256. doi: 10.1016/j.cell.2016.02.043.
2
Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution.
Cell Metab. 2016 Mar 8;23(3):554-62. doi: 10.1016/j.cmet.2016.01.011. Epub 2016 Feb 16.
3
Looking Ahead Perspective: Where Will the Future of Exercise Biology Take Us?
Cell Metab. 2015 Jul 7;22(1):25-30. doi: 10.1016/j.cmet.2015.06.015.
4
Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits.
Cell Metab. 2015 Jul 7;22(1):4-11. doi: 10.1016/j.cmet.2015.05.011. Epub 2015 Jun 11.
7
Muscle as a "mediator" of systemic metabolism.
Cell Metab. 2015 Feb 3;21(2):237-248. doi: 10.1016/j.cmet.2014.12.021.
8
The search for exercise factors in humans.
FASEB J. 2015 May;29(5):1615-28. doi: 10.1096/fj.14-263699. Epub 2015 Jan 15.
9
Aging and the muscle-bone relationship.
Physiology (Bethesda). 2015 Jan;30(1):8-16. doi: 10.1152/physiol.00033.2014.
10
Integrative biology of exercise.
Cell. 2014 Nov 6;159(4):738-49. doi: 10.1016/j.cell.2014.10.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验