Suppr超能文献

挥发性麻醉药免疫效应的机制:综述

Mechanisms of the Immunological Effects of Volatile Anesthetics: A Review.

作者信息

Yuki Koichi, Eckenhoff Roderic G

机构信息

From the *Department of Anesthesiology, Perioperative and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, Massachusetts; †Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts; and ‡Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

Anesth Analg. 2016 Aug;123(2):326-35. doi: 10.1213/ANE.0000000000001403.

Abstract

Volatile anesthetics (VAs) have been in clinical use for a very long time. Their mechanism of action is yet to be fully delineated, but multiple ion channels have been reported as targets for VAs (canonical VA targets). It is increasingly recognized that VAs also manifest effects outside the central nervous system, including on immune cells. However, the literature related to how VAs affect the behavior of immune cells is very limited, but it is of interest that some canonical VA targets are reportedly expressed in immune cells. Here, we review the current literature and describe canonical VA targets expressed in leukocytes and their known roles. In addition, we introduce adhesion molecules called β2 integrins as noncanonical VA targets in leukocytes. Finally, we propose a model for how VAs affect the function of neutrophils, macrophages, and natural killer cells via concerted effects on multiple targets as examples.

摘要

挥发性麻醉剂(VAs)已在临床使用很长时间。其作用机制尚未完全阐明,但已有多种离子通道被报道为VAs的靶点(经典VA靶点)。人们越来越认识到,VAs在中枢神经系统之外也表现出作用,包括对免疫细胞的作用。然而,关于VAs如何影响免疫细胞行为的文献非常有限,但有趣的是,据报道一些经典VA靶点在免疫细胞中表达。在此,我们综述当前文献,并描述在白细胞中表达的经典VA靶点及其已知作用。此外,我们介绍一种称为β2整合素的黏附分子作为白细胞中的非经典VA靶点。最后,我们以VAs如何通过对多个靶点的协同作用影响中性粒细胞、巨噬细胞和自然杀伤细胞的功能为例,提出一个模型。

相似文献

1
Mechanisms of the Immunological Effects of Volatile Anesthetics: A Review.
Anesth Analg. 2016 Aug;123(2):326-35. doi: 10.1213/ANE.0000000000001403.
2
Selective activation of G-protein coupled receptors by volatile anesthetics.
Mol Cell Neurosci. 2005 Dec;30(4):506-12. doi: 10.1016/j.mcn.2005.08.012. Epub 2005 Sep 26.
4
A primordial target: Mitochondria mediate both primary and collateral anesthetic effects of volatile anesthetics.
Exp Biol Med (Maywood). 2023 Apr;248(7):545-552. doi: 10.1177/15353702231165025. Epub 2023 May 19.
6
Activation of leukocyte beta2-integrins.
Vox Sang. 2002 Aug;83 Suppl 1:355-8. doi: 10.1111/j.1423-0410.2002.tb05333.x.
7
Volatile anesthetic action in a computational model of the thalamic reticular nucleus.
Anesthesiology. 2009 May;110(5):996-1010. doi: 10.1097/ALN.0b013e31819db923.
8
Effects of volatile anesthetics on cardiac ion channels.
Acta Anaesthesiol Scand. 2004 May;48(5):547-61. doi: 10.1111/j.0001-5172.2004.00391.x.
9
Volatile aromatic anesthetics variably impact human gamma-aminobutyric acid type A receptor function.
Anesth Analg. 2007 Nov;105(5):1287-92, table of contents. doi: 10.1213/01.ane.0000282829.21797.97.
10
Cardioprotection by volatile anesthetics: new applications for old drugs?
Curr Opin Anaesthesiol. 2006 Aug;19(4):397-403. doi: 10.1097/01.aco.0000236139.31099.b5.

引用本文的文献

1
Costs and Arising Work Times of Volatile Short-Term Sedation in Intensive Care.
Healthcare (Basel). 2025 Jul 18;13(14):1732. doi: 10.3390/healthcare13141732.
2
Effect of inhalational agents in breast cancer surgery on tumour metastasis: Systematic review and meta-analysis.
Indian J Anaesth. 2025 Jun;69(6):561-569. doi: 10.4103/ija.ija_876_24. Epub 2025 May 14.
3
Myocardial protection in cardiac surgery: a comprehensive review of current therapies and future cardioprotective strategies.
Front Med (Lausanne). 2024 Jun 19;11:1424188. doi: 10.3389/fmed.2024.1424188. eCollection 2024.
4
[Influence of anesthesia on surgical site infections].
Anaesthesiologie. 2024 Jun;73(6):423-432. doi: 10.1007/s00101-024-01418-0.
5
Mechanism of isoflurane‑mediated breast cancer growth .
Oncol Lett. 2024 Apr 30;27(6):287. doi: 10.3892/ol.2024.14420. eCollection 2024 Jun.
10
Impact of propofol versus sevoflurane anesthesia on molecular subtypes and immune checkpoints of glioma during surgery.
Health Sci Rep. 2023 Sep 11;6(9):e1366. doi: 10.1002/hsr2.1366. eCollection 2023 Sep.

本文引用的文献

2
Blocking neutrophil integrin activation prevents ischemia-reperfusion injury.
J Exp Med. 2015 Jul 27;212(8):1267-81. doi: 10.1084/jem.20142358. Epub 2015 Jul 13.
3
The two-pore domain K2 P channel TASK2 drives human NK-cell proliferation and cytolytic function.
Eur J Immunol. 2015 Sep;45(9):2602-14. doi: 10.1002/eji.201445208.
4
Ion channels in innate and adaptive immunity.
Annu Rev Immunol. 2015;33:291-353. doi: 10.1146/annurev-immunol-032414-112212.
5
Sustained increase in α5GABAA receptor function impairs memory after anesthesia.
J Clin Invest. 2014 Dec;124(12):5437-41. doi: 10.1172/JCI76669. Epub 2014 Nov 3.
6
Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation.
J Neuroinflammation. 2014 Feb 1;11:23. doi: 10.1186/1742-2094-11-23.
7
Molecular interactions between general anesthetics and the 5HT2B receptor.
J Biomol Struct Dyn. 2015;33(1):211-8. doi: 10.1080/07391102.2013.869483. Epub 2013 Dec 23.
9
10
Blocking KCa3.1 channels increases tumor cell killing by a subpopulation of human natural killer lymphocytes.
PLoS One. 2013 Oct 11;8(10):e76740. doi: 10.1371/journal.pone.0076740. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验