Suppr超能文献

酶如何利用反应性 OH 自由基?非血红素 HppE 和 Fenton 体系的启示。

How do Enzymes Utilize Reactive OH Radicals? Lessons from Nonheme HppE and Fenton Systems.

机构信息

Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel.

Department of Chemistry, Renmin University of China , Beijing 100872, China.

出版信息

J Am Chem Soc. 2016 Jul 13;138(27):8489-96. doi: 10.1021/jacs.6b03555. Epub 2016 Jul 1.

Abstract

The iron(IV)-oxo (ferryl) intermediate has been amply established as the principal oxidant in nonheme enzymes and the key player in C-H bond activations and functionalizations. In contrast to this status, our present QM/MM calculations of the mechanism of fosfomycin biosynthesis (a broad range antibiotic) by the nonheme HppE enzyme rule out the iron(IV)-oxo as the reactive species in the hydrogen abstraction (H-abstraction) step of the pro-R hydrogen from the (S)-2-hydroxypropylphosphonic substrate. Moreover, the study reveals that the ferryl species is bypassed in HppE, while the actual oxidant is an HO(•) radical hydrogen-bonded to a ferric-hydroxo complex, resulting via the homolytic dissociation of the hydrogen peroxide complex, Fe(II)-H2O2. The computed energy barrier of this pathway is 12.0 kcal/mol, in fair agreement with the experimental datum of 9.8 kcal/mol. An alternative mechanism involves the iron-complexed hydroxyl radical (Fe(III)-(HO(•))) that is obtained by protonation of the iron(IV)-oxo group via the O-H group of the substrate. The barrier for this pathway, 23.0 kcal/mol, is higher than the one in the first mechanism. In both mechanisms, the HO(•) radical is highly selective; its H-abstraction leading to the final cis-fosfomycin product. It appears that HppE is prone to usage of HO(•) radicals for C-H bond activation, because the ferryl oxidant requires a specific H-abstraction trajectory (∠FeOH ∼ 180°) that cannot be met for intramolecular H-abstraction. Thus, this work broadens the landscape of nonheme iron enzymes and makes a connection to Fenton chemistry, with implications on new potential biocatalysts that may harness hydroxyl radicals for C-H bond functionalizations.

摘要

铁(IV)-氧(双氧)中间体已被充分确立为非血红素酶中的主要氧化剂,也是 C-H 键活化和功能化的关键因素。与此相反,我们目前通过非血红素 HppE 酶对 fosfomycin 生物合成(一种广谱抗生素)机制的量子力学/分子力学计算排除了铁(IV)-氧作为反应物种在(S)-2-羟基丙基膦酸底物的 pro-R 氢的氢提取(H 提取)步骤中的作用。此外,该研究表明,在 HppE 中双氧物种被绕过,而实际的氧化剂是与铁羟络合物氢键结合的 HO(•)自由基,通过过氧化氢络合物的均裂解离产生,Fe(II)-H2O2。该途径的计算能量势垒为 12.0 kcal/mol,与实验数据 9.8 kcal/mol 相当吻合。另一种机制涉及铁络合的羟基自由基(Fe(III)-(HO(•))),通过质子化底物的 O-H 基团获得。该途径的势垒为 23.0 kcal/mol,高于第一种机制。在这两种机制中,HO(•)自由基具有高度选择性;其 H 提取导致最终的顺式 fosfomycin 产物。似乎 HppE 易于使用 HO(•)自由基进行 C-H 键活化,因为双氧氧化剂需要特定的 H 提取轨迹(∠FeOH∼180°),而分子内 H 提取无法满足。因此,这项工作拓宽了非血红素铁酶的领域,并与芬顿化学建立了联系,对可能利用羟基自由基进行 C-H 键功能化的新潜在生物催化剂具有启示意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验